Sampling conditioned diffusions

作者: Martin Hairer , Andrew Stuart , Jochen Voß

DOI: 10.1017/CBO9781139107020.009

关键词: StatisticsGeneralizationSignalDistribution (mathematics)SmoothingMathematicsSampling (statistics)Sample (statistics)Applied mathematics

摘要: For many practical problems it is useful to be able sample conditioned diffusions on a computer (e.g. in filtering/ smoothing from the distribution of unknown signal given known observations). We present recently developed, SPDE-based method tackle this problem. The an infinite-dimensional generalization Langevin sampling technique.

参考文章(7)
Steven E. Shreve, Ioannis Karatzas, Brownian Motion and Stochastic Calculus ,(1987)
M. Hairer, A. M. Stuart, J. Voss, P. Wiberg, Analysis of SPDEs arising in path sampling. Part I: The Gaussian case Communications in Mathematical Sciences. ,vol. 3, pp. 587- 603 ,(2005) , 10.4310/CMS.2005.V3.N4.A8
Martin Hairer, A. M. Stuart, J. Voss, ANALYSIS OF SPDES ARISING IN PATH SAMPLING PART II: THE NONLINEAR CASE Annals of Applied Probability. ,vol. 17, pp. 1657- 1706 ,(2007) , 10.1214/07-AAP441
A. Apte, C. K. R. T. Jones, A. M. Stuart, J. Voss, Data assimilation: Mathematical and statistical perspectives International Journal for Numerical Methods in Fluids. ,vol. 56, pp. 1033- 1046 ,(2008) , 10.1002/FLD.1698
Neil Shephard, Siddhartha Chib, Michael K Pitt, Likelihood based inference for diffusion driven models. Research Papers in Economics. ,(2004)
A. Apte, M. Hairer, A.M. Stuart, J. Voss, Sampling the posterior: An approach to non-Gaussian data assimilation Physica D: Nonlinear Phenomena. ,vol. 230, pp. 50- 64 ,(2007) , 10.1016/J.PHYSD.2006.06.009
ALEXANDROS BESKOS, GARETH ROBERTS, ANDREW STUART, JOCHEN VOSS, MCMC methods for diffusion bridges Stochastics and Dynamics. ,vol. 08, pp. 319- 350 ,(2008) , 10.1142/S0219493708002378