Continuous-discrete smoothing of diffusions

作者: Moritz Schauer , Frank van der Meulen

DOI:

关键词:

摘要: Suppose X is a multivariate diffusion process that observed discretely in time. At each observation time, linear transformation of the state with noise. The smoothing problem consists recovering path process, consistent observations. We derive novel Markov Chain Monte Carlo algorithm to sample from exact distribution. resulting called Backward Filtering Forward Guiding (BFFG) algorithm. extend include parameter estimation. proposed method relies on guided proposals introduced Schauer et al. (2017). illustrate its efficiency number challenging problems.

参考文章(39)
Jean-Louis Marchand, Conditionnement de processus markoviens Université Rennes 1. ,(2012)
Giuseppe Da Prato, Jerzy Zabczyk, Stochastic Equations in Infinite Dimensions ,(1992)
Martin Hairer, Andrew Stuart, Jochen Voß, Sampling conditioned diffusions Cambridge University Press. ,(2009) , 10.1017/CBO9781139107020.009
Mogens Bladt, Samuel Finch, Michael Sørensen, Simulation of multivariate diffusion bridges Journal of the Royal Statistical Society: Series B (Statistical Methodology). ,vol. 78, pp. 343- 369 ,(2016) , 10.1111/RSSB.12118
Charles-André Cuenod, Benjamin Favetto, Valentine Genon-Catalot, Yves Rozenholc, Adeline Samson, Parameter estimation and change-point detection from Dynamic Contrast Enhanced MRI data using stochastic differential equations. Bellman Prize in Mathematical Biosciences. ,vol. 233, pp. 68- 76 ,(2011) , 10.1016/J.MBS.2011.06.006
Erik Lindström, A regularized bridge sampler for sparsely sampled diffusions Statistics and Computing. ,vol. 22, pp. 615- 623 ,(2012) , 10.1007/S11222-011-9255-Y
Heikki Haario, Eero Saksman, Johanna Tamminen, An adaptive Metropolis algorithm Bernoulli. ,vol. 7, pp. 223- 242 ,(2001) , 10.2307/3318737