作者: Guillaume Goudot , Jonathan Poree , Olivier Pedreira , Lina Khider , Pierre Julia
DOI: 10.1055/A-1060-0529
关键词: Blood viscosity 、 Imaging phantom 、 Materials science 、 Flow velocity 、 Shear stress 、 Internal carotid artery 、 Endarterectomy 、 Common carotid artery 、 Biomedical engineering 、 Vector flow 、 Radiology Nuclear Medicine and imaging
摘要: Objective Carotid plaque vulnerability assessment could guide the decision to perform endarterectomy. Ultrafast ultrasound imaging (UF) can evaluate local flow velocities over an entire 2D image, allowing measurement of the wall shear stress (WSS). We aimed at evaluating the feasibility of WSS measurement in a prospective series of patients with carotid stenosis. Methods UF acquisitions, performed with a linear probe, had an effective frame rate of 5000 Hz. The flow velocity was imaged over the entire plaque area. WSS was computed with the vector field speed using the formula: with the blood velocity and μ, the blood viscosity. The WSS measurement method was validated using a calibrated phantom. In vivo, WSS was analyzed in 5 areas of the carotid wall: common carotid artery, plaque ascent, plaque peak, plaque descent, internal carotid artery. Results Good correlation was found between in vitro measurement and the theoretical WSS values (R2 = 0.95; p < 0.001). 33 patients were prospectively evaluated, with a median carotid stenosis degree of 80 % [75–85]. The maximum WSS value over the cardiac cycle follows the shape of the plaque with an increase during the ascent, reaching its maximum value of 3.25 Pa [2.26–4.38] at the peak of the plaque, and a decrease after passing of the peak (0.93 Pa [0.80–1.19]) lower than the WSS values in the non-stenotic areas (1.47 Pa [1.12–1.77] for the common carotid artery). Conclusion UF allowed local and direct evaluation of the plaque’s WSS, thus better characterizing local hemodynamics to identify areas of vulnerability. Key Points: