Equilibrium and nonequilibrium Lyapunov spectra for dense fluids and solids

作者: Harald A. Posch , William G. Hoover

DOI: 10.1103/PHYSREVA.39.2175

关键词: Statistical physicsCurse of dimensionalityReynolds numberPhysicsHypersphereAttractorPhase spaceLyapunov functionNon-equilibrium thermodynamicsLyapunov exponent

摘要: The Lyapunov exponents describe the time-averaged rates of expansion and contraction a Lagrangian hypersphere made up comoving phase-space points. principal axes such grow, or shrink, exponentially fast with time. corresponding set growth decay is called ''Lyapunov spectrum.'' spectra are determined here for variety two- three-dimensional fluids solids, both at equilibrium in nonequilibrium steady states. states all boundary-driven shear flows, which single boundary degree freedom maintained constant temperature, using Nose-Hoover thermostat. Even far-from-equilibrium deviate logarithmically from ones. Our spectra, to planar-Couette-flow Reynolds numbers ranging 13 84, resemble some recent approximate model calculations based on Navier-Stokes hydrodynamics. We calculate Kaplan-Yorke fractal dimensionality flows associated our strange attractors. may exceed number additional dimensions required time dependence shear-flow boundary.

参考文章(41)
Denis J. Evans, Response theory as a free-energy extremum. Physical Review A. ,vol. 32, pp. 2923- 2925 ,(1985) , 10.1103/PHYSREVA.32.2923
D. M. Heyes, G. P. Morriss, D. J. Evans, Nonequilibrium molecular dynamics study of shear flow in soft disks Journal of Chemical Physics. ,vol. 83, pp. 4760- 4766 ,(1985) , 10.1063/1.449001
William G. Hoover, Harald A. Posch, Direct measurement of equilibrium and nonequilibrium Lyapunov spectra Physics Letters A. ,vol. 123, pp. 227- 230 ,(1987) , 10.1016/0375-9601(87)90067-3
Roland Grappin, Jacques Léorat, Computation of the dimension of two-dimensional turbulence. Physical Review Letters. ,vol. 59, pp. 1100- 1103 ,(1987) , 10.1103/PHYSREVLETT.59.1100
D. J. Evans, B. L. Holian, The Nose–Hoover thermostat Journal of Chemical Physics. ,vol. 83, pp. 4069- 4074 ,(1985) , 10.1063/1.449071
W. G. Hoover, W. T. Ashurst, R. J. Olness, Two‐dimensional computer studies of crystal stability and fluid viscosity Journal of Chemical Physics. ,vol. 60, pp. 4043- 4047 ,(1974) , 10.1063/1.1680855
J. -P. Eckmann, D. Ruelle, Addendum: Ergodic theory of chaos and strange attractors Reviews of Modern Physics. ,vol. 57, pp. 1115- 1115 ,(1985) , 10.1103/REVMODPHYS.57.1115
William G. Hoover, Canonical dynamics: Equilibrium phase-space distributions Physical Review A. ,vol. 31, pp. 1695- 1697 ,(1985) , 10.1103/PHYSREVA.31.1695
Brad Lee Holian, William G. Hoover, Harald A. Posch, Resolution of Loschmidt's paradox: The origin of irreversible behavior in reversible atomistic dynamics. Physical Review Letters. ,vol. 59, pp. 10- 13 ,(1987) , 10.1103/PHYSREVLETT.59.10
Spotswood D. Stoddard, Joseph Ford, Numerical Experiments on the Stochastic Behavior of a Lennard-Jones Gas System Physical Review A. ,vol. 8, pp. 1504- 1512 ,(1973) , 10.1103/PHYSREVA.8.1504