ESTIMATING THE NUMBER OF SPECIES WITH MULTIPLE INCIDENCE-BASED SUBSAMPLES

作者: Chang Xuan Mao

DOI:

关键词: MathematicsAlgebraic numberUpper and lower boundsConfidence intervalOddsStatisticsEstimatorStandard errorEconometricsMultivariate statisticsMixture model

摘要: Estimating the number of species from multiple incidence-based subsam- ples is great importance in ecological and environmental sciences. The problem investigated a mixture model multivariate binomial densities. A sequence algebraic lower bounds to odds that unseen survey pro- posed. bound leads an estimator for species. nonparametric bootstrap method can be used compute confidence limits. asymptotic standard error first order provided. An example simulation experiment carried out assess proposed estimators.

参考文章(12)
Chang Xuan Mao, Bruce G. Lindsay, Estimating the number of classes in multiple populations: a geometric analysis Canadian Journal of Statistics-revue Canadienne De Statistique. ,vol. 32, pp. 303- 314 ,(2004) , 10.2307/3315931
Anne Chao, Wen-Han Hwang, YC Chen, CY Kuo, ESTIMATING THE NUMBER OF SHARED SPECIES IN TWO COMMUNITIES Statistica Sinica. ,(2000)
John T Longino, Jonathan Coddington, Robert K Colwell, None, THE ANT FAUNA OF A TROPICAL RAIN FOREST: ESTIMATING SPECIES RICHNESS THREE DIFFERENT WAYS Ecology. ,vol. 83, pp. 689- 702 ,(2002) , 10.1890/0012-9658(2002)083[0689:TAFOAT]2.0.CO;2
Chang Xuan Mao, Bruce G. Lindsay, Estimating the number of classes Annals of Statistics. ,vol. 35, pp. 917- 930 ,(2007) , 10.1214/009053606000001280
Bruce G. Lindsay, Kathryn Roeder, A Unified Treatment of Integer Parameter Models Journal of the American Statistical Association. ,vol. 82, pp. 758- 764 ,(1987) , 10.1080/01621459.1987.10478496
Gail Gong, Francisco J. Samaniego, Pseudo Maximum Likelihood Estimation: Theory and Applications Annals of Statistics. ,vol. 9, pp. 861- 869 ,(1981) , 10.1214/AOS/1176345526
Anne E. Magurran, Measuring Biological Diversity ,(2004)
J. Bunge, M. Fitzpatrick, Estimating the Number of Species: A Review Journal of the American Statistical Association. ,vol. 88, pp. 364- 373 ,(1993) , 10.1080/01621459.1993.10594330