On the Number of Incipient Spanning Clusters

作者: Michael Aizenman

DOI: 10.1016/S0550-3213(96)00626-8

关键词:

摘要: In critical percolation models, in a large cube there will typically be more than one cluster of comparable diameter. 2D, the probability k ⪢ 1 spanning clusters is order e−αk2. dimensions d > 6, when η = 0 proliferate: for L → ∞ tends to one, and are ≈ Ld−6 size |Cmax|L4. The rigorous results confirm generally accepted picture but also correct some misconceptions concerning uniqueness dominant cluster. We distinguish between two related concepts: Incipient Infinite Cluster, which unique partly due its construction, Spanning Clusters, not. scaling limits ISC show interesting differences low (d 2) high dimensions. latter case 6?) we find indication that double limit: infinite volume zero lattice spacing, properly defined would exhibit both at state infinitely many clusters.

参考文章(48)
J. M. Hammersley, Percolation processes. II. The connective constant Mathematical Proceedings of the Cambridge Philosophical Society. ,vol. 53, pp. 642- 645 ,(1957) , 10.1017/S0305004100032692
Antonio Coniglio, Shapes, Surfaces, and Interfaces in Percolation Clusters Springer, Berlin, Heidelberg. pp. 84- 101 ,(1985) , 10.1007/978-3-642-93301-1_11
Joel Louis Lebowitz, Cyril Domb, Melville S. Green, Phase Transitions and Critical Phenomena ,(1972)
C.M. Fortuin, P.W. Kasteleyn, On the random-cluster model: I. Introduction and relation to other models Physica D: Nonlinear Phenomena. ,vol. 57, pp. 536- 564 ,(1972) , 10.1016/0031-8914(72)90045-6
P.D. Seymour, D.J.A. Welsh, Percolation probabilities on the square lattice Annals of discrete mathematics. ,vol. 3, pp. 227- 245 ,(1978) , 10.1016/S0167-5060(08)70509-0
G. Toulouse, Perspectives from the theory of phase transitions Il Nuovo Cimento B. ,vol. 23, pp. 234- 240 ,(1974) , 10.1007/BF02737507
Harry Kesten, Scaling relations for $2$D-percolation Communications in Mathematical Physics. ,vol. 109, pp. 109- 156 ,(1987) , 10.1007/BF01205674
A. B. Harris, T. C. Lubensky, W. K. Holcomb, C. Dasgupta, Renormalization-Group Approach to Percolation Problems. Physical Review Letters. ,vol. 35, pp. 327- 330 ,(1975) , 10.1103/PHYSREVLETT.35.327