Finite $W$-superalgebras and the dimensional lower bounds for the representations of basic Lie superalgebras

作者: Yang Zeng , Bin Shu

DOI:

关键词:

摘要: In this paper we formulate a conjecture about the minimal dimensional representations of finite $W$-superalgebra $U(\mathfrak{g}_\bbc,e)$ over field complex numbers and demonstrate it with examples including all cases type $A$. Under assumption conjecture, show that lower bounds dimensions in modular basic Lie superalgebras are attainable. Such bounds, as super-version Kac-Weisfeiler were formulated by Wang-Zhao \cite{WZ} for superalgebra ${\ggg}_{{\bbk}}$ an algebraically closed $\bbk$ positive characteristic $p$.

参考文章(24)
V. Kac, Representations of classical lie superalgebras Springer Berlin Heidelberg. pp. 597- 626 ,(1978) , 10.1007/BFB0063691
Jens Carsten Jantzen, Karl-Hermann Neeb, Jens Carsten Jantzen, Nilpotent Orbits in Representation Theory Lie Theory. pp. 1- 211 ,(2004) , 10.1007/978-0-8176-8192-0_1
Aleksandr Aleksandrovich Kirillov, F. A. Berezin, Introduction to Superanalysis ,(1987)
Shun-Jen Cheng, Weiqiang Wang, Dualities and Representations of Lie Superalgebras ,(2012)
Thomas Emile Lynch, Generalized Whittaker vectors and representation theory. Massachusetts Institute of Technology. ,(1979)
Jens Carsten Jantzen, Representations of algebraic groups ,(1987)
A. Premet, Primitive ideals, non-restricted representations and finite W-algebras Moscow Mathematical Journal. ,vol. 7, pp. 743- 762 ,(2007) , 10.17323/1609-4514-2007-7-4-743-762
Yang Zeng, Bin Shu, On Kac-Weisfeiler modules for general and special linear Lie superalgebras arXiv: Representation Theory. ,(2014)
Bin Shu, Yang Zeng, Finite W-superalgebras for basic Lie superalgebras arXiv: Representation Theory. ,(2014)
Ivan Losev, Quantized symplectic actions and W -algebras Journal of the American Mathematical Society. ,vol. 23, pp. 35- 59 ,(2010) , 10.1090/S0894-0347-09-00648-1