Finite W-superalgebras for basic Lie superalgebras

作者: Bin Shu , Yang Zeng

DOI:

关键词:

摘要: We consider the finite $W$-superalgebra $U(\mathfrak{g_\bbf},e)$ for a basic Lie superalgebra ${\ggg}_\bbf=(\ggg_\bbf)_\bz+(\ggg_\bbf)_\bo$ associated with nilpotent element $e\in (\ggg_\bbf)_{\bar0}$ both over field of complex numbers $\bbf=\mathbb{C}$ and $\bbf={\bbk}$ an algebraically closed positive characteristic. In this paper, we mainly present PBW theorem $U({\ggg}_\bbf,e)$. Then construction $U({\ggg}_\bbf,e)$ can be understood well, which in contrast $W$-algebras, is divided into two cases virtue parity $\text{dim}\,\mathfrak{g_\bbf}(-1)_{\bar1}$. This observation will basis our sequent work on dimensional lower bounds super Kac-Weisfeiler property modular representations superalgebras (cf. \cite[\S7-\S9]{ZS}).

参考文章(28)
V. Kac, Representations of classical lie superalgebras Springer Berlin Heidelberg. pp. 597- 626 ,(1978) , 10.1007/BFB0063691
Aleksandr Aleksandrovich Kirillov, F. A. Berezin, Introduction to Superanalysis ,(1987)
Shun-Jen Cheng, Weiqiang Wang, Dualities and Representations of Lie Superalgebras ,(2012)
Thomas Emile Lynch, Generalized Whittaker vectors and representation theory. Massachusetts Institute of Technology. ,(1979)
Jens Carsten Jantzen, Representations of algebraic groups ,(1987)
A. Premet, Primitive ideals, non-restricted representations and finite W-algebras Moscow Mathematical Journal. ,vol. 7, pp. 743- 762 ,(2007) , 10.17323/1609-4514-2007-7-4-743-762
Wee Gan, Victor Ginzburg, Quantization of Slodowy slices International Mathematics Research Notices. ,vol. 2002, pp. 243- 255 ,(2002) , 10.1155/S107379280210609X
Ivan Losev, Quantized symplectic actions and W -algebras Journal of the American Mathematical Society. ,vol. 23, pp. 35- 59 ,(2010) , 10.1090/S0894-0347-09-00648-1
Jonathan Brundan, Alexander Kleshchev, Modular representations of the supergroup Q(n), I Journal of Algebra. ,vol. 260, pp. 64- 98 ,(2003) , 10.1016/S0021-8693(02)00620-8