General representational automata using deep neural networks

作者: Johnpaul C.I. , Munaga V.N.K. Prasad , S. Nickolas , G.R. Gangadharan

DOI: 10.1016/J.DATAK.2019.06.004

关键词:

摘要: Abstract Unlabeled data representation constitutes a major challenge in mining. Different unsupervised learning methods such as clustering and dimensionality reduction form the basis of representations. The impact attribute combinations their interactions on is less addressed by models. A model supported with machine concepts can reveal more information about nature underlying data. We herein present novel minimum instance selection (UMAIS) labeling algorithm that selects categorical class label, attribute-based powerset generation (APSG) for describing formation relevant sets using correlation powerset. Using these algorithms, we diagrammatic known Representational Automata depict importance among correlated non-correlated attributes an unlabeled dataset. performed experiments two large-scale datasets from energy financial domains compared our approach other standard classifiers. Our obtains significantly better classification accuracy 92.187% 87.32% datasets, respectively, to 74% 82% linear classifier, respectively.

参考文章(39)
Chen Qin, Shiji Song, Gao Huang, Lei Zhu, Unsupervised neighborhood component analysis for clustering Neurocomputing. ,vol. 168, pp. 609- 617 ,(2015) , 10.1016/J.NEUCOM.2015.05.064
Erkki Oja, Applications of Independent Component Analysis international conference on neural information processing. pp. 1044- 1051 ,(2004) , 10.1007/978-3-540-30499-9_162
J. Fernando Sánchez-Rada, Carlos A. Iglesias, Onyx: A Linked Data approach to emotion representation Information Processing & Management. ,vol. 52, pp. 99- 114 ,(2016) , 10.1016/J.IPM.2015.03.007
Sébastien Benzekry, Clare Lamont, Afshin Beheshti, Amanda Tracz, John M. L. Ebos, Lynn Hlatky, Philip Hahnfeldt, Classical Mathematical Models for Description and Prediction of Experimental Tumor Growth PLoS Computational Biology. ,vol. 10, pp. e1003800- ,(2014) , 10.1371/JOURNAL.PCBI.1003800
V. Majazi Dalfard, M. Nazari Asli, S.M. Asadzadeh, S.M. Sajjadi, A. Nazari-Shirkouhi, A mathematical modeling for incorporating energy price hikes into total natural gas consumption forecasting Applied Mathematical Modelling. ,vol. 37, pp. 5664- 5679 ,(2013) , 10.1016/J.APM.2012.11.012
Jiri Krupka, Pavel Jirava, Rough-fuzzy Classifier Modeling Using Data Repository Sets Procedia Computer Science. ,vol. 35, pp. 701- 709 ,(2014) , 10.1016/J.PROCS.2014.08.152
Shaosheng Cao, Wei Lu, Qiongkai Xu, GraRep: Learning Graph Representations with Global Structural Information conference on information and knowledge management. pp. 891- 900 ,(2015) , 10.1145/2806416.2806512
G Trigeorgis, K Bousmalis, S Zafeiriou, BW Schuller, A Mitra, S Biswas, C Bhattacharyya, K Luu, M Savvides, TD Bui, CY Suen, Y Xu, E Carlinet, T Géraud, L Najman, P Wang, C Shen, A van den Hengel, PHS Torr, Z Lu, Z Fu, T Xiang, P Han, L Wang, X Gao, C Bregler, B Schiele, C Theobalt, R Martín-Clemente, V Zarzoso, WS Chu, F De la Torre, JF Cohn, MW Tao, PP Srinivasan, S Hadap, S Rusinkiewicz, J Malik, R Ramamoorthi, B Biggio, G Fumera, GL Marcialis, F Roli, J Yang, MH Yang, B Wang, G Wang, KL Chan, L Wang, M Alterman, YY Schechner, Y Swirski, I Takigawa, H Mamitsuka, A Deep Matrix Factorization Method for Learning Attribute Representations IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 39, pp. 417- 429 ,(2017) , 10.1109/TPAMI.2016.2554555
A.K. Jain, P.W. Duin, Jianchang Mao, Statistical pattern recognition: a review IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 22, pp. 4- 37 ,(2000) , 10.1109/34.824819
David G. Lowe, Distinctive Image Features from Scale-Invariant Keypoints International Journal of Computer Vision. ,vol. 60, pp. 91- 110 ,(2004) , 10.1023/B:VISI.0000029664.99615.94