On graded decomposition numbers of Cherednik algebras

作者: Christopher Bowman , Anton Cox , Liron Speyer

DOI: 10.1093/IMRN/RNW101

关键词:

摘要: We provide an algorithmic description of a family graded decomposition numbers for rational Cherednik algebras.

参考文章(31)
Wolfgang Soergel, Kazhdan-Lusztig polynomials and a combinatoric for tilting modules Representation Theory of The American Mathematical Society. ,vol. 1, pp. 83- 114 ,(1997) , 10.1090/S1088-4165-97-00021-6
Nicolas Jacon, Meinolf Josef Geck, Representations of Hecke Algebras at Roots of Unity ,(2011)
Raphaël Rouquier, Peng Shan, Michela Varagnolo, Eric Vasserot, Categorifications and cyclotomic rational double affine Hecke algebras Inventiones mathematicae. ,vol. 204, pp. 671- 786 ,(2016) , 10.1007/S00222-015-0623-7
Ben Webster, Rouquier's conjecture and diagrammatic algebra arXiv: Representation Theory. ,(2013)
Steen Ryom-Hansen, The Lascoux, Leclerc and Thibon algorithm and Soergel's tilting algorithm Journal of Algebraic Combinatorics. ,vol. 23, pp. 5- 20 ,(2006) , 10.1007/S10801-006-6026-5
Alexander Kleshchev, David Nash, An Interpretation of the Lascoux–Leclerc–Thibon Algorithm and Graded Representation Theory Communications in Algebra. ,vol. 38, pp. 4489- 4500 ,(2010) , 10.1080/00927870903386536