A streamlined acquisition for mapping baseline brain oxygenation using quantitative BOLD

作者: Alan J. Stone , Nicholas P. Blockley

DOI: 10.1016/J.NEUROIMAGE.2016.11.057

关键词:

摘要: Quantitative BOLD (qBOLD) is a non-invasive MR technique capable of producing quantitative measurements the haemodynamic and metabolic properties brain. Here we propose refinement qBOLD methodology, dubbed streamlined-qBOLD, in order to provide clinically feasible method for mapping baseline brain oxygenation. In streamlined-qBOLD confounding signal contributions are minimised during data acquisition through application (i) Fluid Attenuated Inversion Recovery (FLAIR) preparation remove cerebral spinal fluid (CSF) contamination, (ii) Gradient Echo Slice Excitation Profile Imaging (GESEPI) reduce effect macroscopic magnetic field gradients (iii) an Asymmetric Spin (ASE) pulse sequence directly measure reversible transverse relaxation rate, R2'. Together these features simplify model, improving robustness resultant parametric maps. A theoretical optimisation framework was used optimise parameters relation noise ratio. healthy subject group (n = 7) apparent elevations R2' caused by partial volumes CSF were shown be reduced with nulling. Significant decreases (p < 0.001) deoxygenated blood volume 0.01) seen cortical grey matter, across group, suppression. oxygenation parameter maps calculated using modelling compared literature values.

参考文章(47)
Debra A. Gusnard, Marcus E. Raichle, Searching for a baseline: Functional imaging and the resting human brain Nature Reviews Neuroscience. ,vol. 2, pp. 685- 694 ,(2001) , 10.1038/35094500
William M. Spees, Dmitriy A. Yablonskiy, Mark C. Oswood, Joseph J.H. Ackerman, Water proton MR properties of human blood at 1.5 Tesla: Magnetic susceptibility, T1, T2, T *2, and non‐Lorentzian signal behavior Magnetic Resonance in Medicine. ,vol. 45, pp. 533- 542 ,(2001) , 10.1002/MRM.1072
G. Marchal, P. Rioux, M.-C. Petit-Taboue, G. Sette, J.-M. Travere, C. Le Poec, P. Courtheoux, J.-M. Derlon, J.-C. Baron, Regional cerebral oxygen consumption, blood flow, and blood volume in healthy human aging. JAMA Neurology. ,vol. 49, pp. 1013- 1020 ,(1992) , 10.1001/ARCHNEUR.1992.00530340029014
Dmitriy A. Yablonskiy, E. Mark Haacke, Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magnetic Resonance in Medicine. ,vol. 32, pp. 749- 763 ,(1994) , 10.1002/MRM.1910320610
D. Keith Robinson, Philip R. Bevington, Data Reduction and Error Analysis for the Physical Sciences ,(1969)
P A Gowland, R Bowtell, Theoretical optimization of multi-echo fMRI data acquisition. Physics in Medicine and Biology. ,vol. 52, pp. 1801- 1813 ,(2007) , 10.1088/0031-9155/52/7/003
Nicholas P. Blockley, Valerie E.M. Griffeth, Michael A. Germuska, Daniel P. Bulte, Richard B. Buxton, An analysis of the use of hyperoxia for measuring venous cerebral blood volume: Comparison of the existing method with a new analysis approach NeuroImage. ,vol. 72, pp. 33- 40 ,(2013) , 10.1016/J.NEUROIMAGE.2013.01.039
Qing X. Yang, Gerald D. Williams, Roger J. Demeure, Timothy J. Mosher, Michael B. Smith, Removal of local field gradient artifacts in T2*-weighted images at high fields by gradient-echo slice excitation profile imaging. Magnetic Resonance in Medicine. ,vol. 39, pp. 402- 409 ,(1998) , 10.1002/MRM.1910390310
H Yamauchi, H Fukuyama, Y Nagahama, H Nabatame, K Nakamura, Y Yamamoto, Y Yonekura, J Konishi, J Kimura, Evidence of misery perfusion and risk for recurrent stroke in major cerebral arterial occlusive diseases from PET. Journal of Neurology, Neurosurgery, and Psychiatry. ,vol. 61, pp. 18- 25 ,(1996) , 10.1136/JNNP.61.1.18