A Model for the Quasi-Static Growth of Brittle Fractures: Existence and Approximation Results

作者: Gianni Dal Maso , Rodica Toader

DOI: 10.1007/S002050100187

关键词:

摘要: We give a precise mathematical formulation of variational model for the irreversible quasi-static evolution brittle fractures proposed by G. A. Francfort and J.-J. Marigo, based on Griffith's theory crack growth. In two-dimensional case we prove an existence result show that total energy is absolutely continuous function time, although cannot exclude possibility bulk surface may present some jump discontinuities. This proved time-discretization process, where at each step global minimization performed, with constraint new contains all cracks formed previous time steps. procedure provides effective way to approximate evolution.

参考文章(33)
G. C. Sih, H. Liebowitz, Mathematical theories of brittle fracture. ,(1968)
H. Attouch, Variational convergence for functions and operators Pitman Advanced Pub. Program. ,(1984)
Herbert Federer, Geometric Measure Theory ,(1969)
O. Martio, Juha Heinonen, Tero Kilpeläinen, Nonlinear Potential Theory of Degenerate Elliptic Equations ,(1993)
Jean Michel Morel, Sergio Solimini, Variational methods in image segmentation Birkhauser Boston Inc.. ,(1995) , 10.1007/978-1-4684-0567-5
H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert North-Holland Pub. Co , American Elsevier Pub. Co.. ,(1973)