Hopf coactions on odd spheres

作者: Suvrajit Bhattacharjee , Debashish Goswami

DOI: 10.1016/J.JALGEBRA.2019.08.012

关键词:

摘要: Abstract We prove that the q-deformed unitary group, i.e., U q ( N ) , is universal compact quantum group in category of (compact) groups which coact on odd sphere S 2 − 1 leaving space spanned by natural set generators invariant and preserving unique functional . Using this, we identify as orientation isometries (in sense Bhowmick Goswami [5] for a spectral triple associated with constructed Chakraborty Pal [9]

参考文章(31)
Martin Welk, COVARIANT DIFFERENTIAL CALCULUS ON QUANTUM SPHERES OF ODD DIMENSION Czechoslovak Journal of Physics. ,vol. 48, pp. 1507- 1514 ,(1998) , 10.1023/A:1021642214226
Konrad Schmüdgen, Anatoli Klimyk, Quantum Groups and Their Representations ,(2011)
Ann Maes, Alfons Van Daele, Notes on Compact Quantum Groups arXiv: Functional Analysis. ,(1998)
Vyjayanthi Chari, A guide to quantum groups ,(1994)
Julien Bichon, Quantum automorphism groups of finite graphs Proceedings of the American Mathematical Society. ,vol. 131, pp. 665- 673 ,(2002) , 10.1090/S0002-9939-02-06798-9
L.D. Faddeev, N.Yu. Reshetikhin, L.A. Takhtajan, Quantization of Lie Groups and Lie Algebras Algebraic Analysis#R##N#Papers Dedicated to Professor Mikio Sato on the Occasion of his Sixtieth Birthday, Volume 1. ,vol. 1, pp. 193- 225 ,(1987) , 10.1016/B978-0-12-400465-8.50019-5
Francesco D'Andrea, Jyotishman Bhowmick, Ludwik Dabrowski, Biswarup Das, Quantum gauge symmetries in Noncommutative Geometry arXiv: Quantum Algebra. ,(2011) , 10.4171/JNCG/161
Teodor Banica, Quantum automorphism groups of small metric spaces Pacific Journal of Mathematics. ,vol. 219, pp. 27- 51 ,(2005) , 10.2140/PJM.2005.219.27
S. L. Woronowicz, Compact matrix pseudogroups Communications in Mathematical Physics. ,vol. 111, pp. 613- 665 ,(1987) , 10.1007/BF01219077
George M Bergman, The diamond lemma for ring theory Advances in Mathematics. ,vol. 29, pp. 178- 218 ,(1978) , 10.1016/0001-8708(78)90010-5