Quantum gauge symmetries in Noncommutative Geometry

作者: Francesco D'Andrea , Jyotishman Bhowmick , Ludwik Dabrowski , Biswarup Das

DOI: 10.4171/JNCG/161

关键词:

摘要: We discuss generalizations of the notion i) group unitary elements a (real or complex) finite dimensional C*-algebra, ii) gauge transformations and iii) (real) automorphisms, in framework compact quantum theory spectral triples. The analogue these groups are defined as universal (initial) objects some natural categories. After proving existence objects, we several examples that interest to physics, they appear noncommutative geometry approach particle physics: particular, C*-algebras M_n(R), M_n(C) M_n(H), describing space Einstein-Yang-Mills systems, algebras A_F=C+H+M_3(C) A^{ev}=H+H+M_4(C), Chamseddine-Connes derivation Standard Model physics minimally coupled gravity. As byproduct, identify "free" version symplectic Sp(n) (quaternionic group).

参考文章(27)
Konrad Schmüdgen, Anatoli Klimyk, Quantum Groups and Their Representations ,(2011)
Teodor Banica, Roland Vergnioux, INVARIANTS OF THE HALF-LIBERATED ORTHOGONAL GROUP Annales de l'Institut Fourier. ,vol. 60, pp. 2137- 2164 ,(2010) , 10.5802/AIF.2579
Francesco D’Andrea, Ludwik Dąbrowski, Dirac Operators on Quantum Projective Spaces Communications in Mathematical Physics. ,vol. 295, pp. 731- 790 ,(2010) , 10.1007/S00220-010-0989-8
Piotr Sołtan, Quantum SO(3) groups and quantum group actions on M2 Journal of Noncommutative Geometry. ,vol. 4, pp. 1- 28 ,(2010) , 10.4171/JNCG/48
Teodor Banica, Le Groupe Quantique Compact Libre U(n) Communications in Mathematical Physics. ,vol. 190, pp. 143- 172 ,(1997) , 10.1007/S002200050237
Teodor Banica, Quantum automorphism groups of small metric spaces Pacific Journal of Mathematics. ,vol. 219, pp. 27- 51 ,(2005) , 10.2140/PJM.2005.219.27
Shuzhou Wang, Free products of compact quantum groups Communications in Mathematical Physics. ,vol. 167, pp. 671- 692 ,(1995) , 10.1007/BF02101540
Julien Bichon, The Representation Category of the Quantum Group of a Non-degenerate Bilinear Form Communications in Algebra. ,vol. 31, pp. 4831- 4851 ,(2003) , 10.1081/AGB-120023135
Shuzhou Wang, Ergodic Actions of Universal Quantum Groups on Operator Algebras Communications in Mathematical Physics. ,vol. 203, pp. 481- 498 ,(1999) , 10.1007/S002200050622
Piotr M. Sołtan, Quantum families of maps and quantum semigroups on finite quantum spaces Journal of Geometry and Physics. ,vol. 59, pp. 354- 368 ,(2009) , 10.1016/J.GEOMPHYS.2008.11.007