The Representation Category of the Quantum Group of a Non-degenerate Bilinear Form

作者: Julien Bichon

DOI: 10.1081/AGB-120023135

关键词:

摘要: Abstract We show that the representation category of quantum group a non-degenerate bilinear form is monoidally equivalent to SL q (2) for well chosen non-zero parameter q. The key ingredient proof this result direct and explicit construction an appropriate Hopf bigalois extension. Then we get, when base field characteristic zero, full description cosemisimple algebras whose semi-ring isomorphic one SL(2).

参考文章(23)
Konrad Schmüdgen, Anatoli Klimyk, Quantum Groups and Their Representations ,(2011)
Piotr Kondratowicz, Piotr Podleś, On representation theory of quantum $SL_{q}(2)$ groups at roots of unity Banach Center Publications. ,vol. 40, pp. 223- 248 ,(1997) , 10.4064/-40-1-223-248
HO Hai PHUNG, ON MATRIX QUANTUM GROUPS OF TYPE An International Journal of Mathematics. ,vol. 11, pp. 1115- 1146 ,(2000) , 10.1142/S0129167X00000581
L.A. Lambe, D.E. Radford, Algebraic Aspects of the Quantum Yang-Baxter Equation Journal of Algebra. ,vol. 154, pp. 228- 288 ,(1993) , 10.1006/JABR.1993.1014
Shuzhou Wang, Free products of compact quantum groups Communications in Mathematical Physics. ,vol. 167, pp. 671- 692 ,(1995) , 10.1007/BF02101540
P. Podleś, E. Müller, Introduction to Quantum Groups Reviews in Mathematical Physics. ,vol. 10, pp. 511- 551 ,(1998) , 10.1142/S0129055X98000173
Peter Schauenburg, Hopf bigalois extensions Communications in Algebra. ,vol. 24, pp. 3797- 3825 ,(1996) , 10.1080/00927879608825788
S.L. Woronowicz, New quantum deformation of SL(2,C). Hopf algebra level Reports on Mathematical Physics. ,vol. 30, pp. 259- 269 ,(1991) , 10.1016/0034-4877(91)90030-Q