Scale-selective Time Integration for Long-Wave Linear Acoustics

作者: Stefan Vater , Rupert Klein , Omar M. Knio

DOI: 10.1007/978-3-642-20671-9_81

关键词:

摘要: In this note, we present a new method for the numerical integration of one dimensional linear acoustics with long time steps. It is based on scale-wise decomposition data using standard multigrid ideas and scale-dependent blending basic integrators different principal features. This enables us to accurately compute balanced solutions slowly varying short-wave source terms. At same time, effectively filters freely propagating compressible modes. The selection time guided by their discrete-dispersion relation. Furthermore, ability schemes reproduce shortly investigated. meant be used in semi-implicit finite volume methods weakly flows.

参考文章(9)
Dale R. Durran, Numerical Methods for Fluid Dynamics Texts in Applied Mathematics. ,(2010) , 10.1007/978-1-4419-6412-0
Folkmar Bornemann, Peter Deuflhard, Scientific Computing with Ordinary Differential Equations ,(2002)
Stefan Vater, Rupert Klein, Omar M. Knio, A scale-selective multilevel method for long-wave linear acoustics Acta Geophysica. ,vol. 59, pp. 1076- 1108 ,(2011) , 10.2478/S11600-011-0037-X
Piotr K. Smolarkiewicz, Andreas Dörnbrack, Conservative integrals of adiabatic Durran's equations International Journal for Numerical Methods in Fluids. ,vol. 56, pp. 1513- 1519 ,(2008) , 10.1002/FLD.1601
Terry Davies, Andrew Staniforth, Nigel Wood, John Thuburn, Validity of anelastic and other equation sets as inferred from normal‐mode analysis Quarterly Journal of the Royal Meteorological Society. ,vol. 129, pp. 2761- 2775 ,(2003) , 10.1256/QJ.02.1951
Stefan Vater, Rupert Klein, Stability of a Cartesian grid projection method for zero Froude number shallow water flows Numerische Mathematik. ,vol. 113, pp. 123- 161 ,(2009) , 10.1007/S00211-009-0224-8
Wataru Ohfuchi, Takeshi Enomoto, Hisashi Nakamura, Shozo Yamane, Xindong Peng, Koutarou Takaya, Mayumi K. Yoshioka, Kozo Ninomiya, Yoshio Kurihara, Teruyuki Nishimura, 10-km Mesh Meso-scale Resolving Simulations of the Global Atmosphere on the Earth Simulator - Preliminary Outcomes of AFES (AGCM for the Earth Simulator) - ,(2004)