Conservative integrals of adiabatic Durran's equations

作者: Piotr K. Smolarkiewicz , Andreas Dörnbrack

DOI: 10.1002/FLD.1601

关键词:

摘要: Potential advances are investigated in the area of generalized anelastic approximations. Consistent control-volume integrals designed and compared for established Lipps-Hemler form (of approximation) Durran's pseudo-incompressible form. The Durran system provides a unique theoretical tool - useful research geophysical stellar flows within existing set reduced, Boussinesq-type fluid models. It represents thermal aspects compressibility free sound waves, yet momentum equation is unapproximated. latter admits unabbreviated baroclinic production vorticity, thus facilitating separation baroclinicity effects per se. Compared with other reduced models, there little cumulative experience integrating system. Perhaps first conservative integrations equations presented, using flux-form transport methods exact projection associated elliptic problem. Because resulting code built from preexisting model, consistency numerics assured minimizing uncertainties ad hoc comparisons. While broader physical implications addressed, considerations illustrated examples atmospheric flows.

参考文章(23)
P. K. Smolarkiewicz, L. G. Margolin, VARIATIONAL METHODS FOR ELLIPTIC PROBLEMS IN FLUID MODELS Conference title not supplied, Conference location not supplied, Conference dates not supplied. ,(2000)
Yoshimitsu Ogura, Norman A. Phillips, Scale Analysis of Deep and Shallow Convection in the Atmosphere Journal of the Atmospheric Sciences. ,vol. 19, pp. 173- 179 ,(1962) , 10.1175/1520-0469(1962)019<0173:SAODAS>2.0.CO;2
Piotr K. Smolarkiewicz, Multidimensional positive definite advection transport algorithm: an overview International Journal for Numerical Methods in Fluids. ,vol. 50, pp. 1123- 1144 ,(2006) , 10.1002/FLD.1071
Louisa B. Nance, Dale R. Durran, A Comparison of the Accuracy of Three Anelastic Systems and the Pseudo-Incompressible System. Journal of the Atmospheric Sciences. ,vol. 51, pp. 3549- 3565 ,(1994) , 10.1175/1520-0469(1994)051<3549:ACOTAO>2.0.CO;2
Joseph M. Prusa, Piotr K. Smolarkiewicz, An all-scale anelastic model for geophysical flows: dynamic grid deformation Journal of Computational Physics. ,vol. 190, pp. 601- 622 ,(2003) , 10.1016/S0021-9991(03)00299-7
Piotr K. Smolarkiewicz, Len O. Margolin, On Forward-in-Time Differencing for Fluids: Extension to a Curvilinear Framework Monthly Weather Review. ,vol. 121, pp. 1847- 1859 ,(1993) , 10.1175/1520-0493(1993)121<1847:OFITDF>2.0.CO;2
Francis J Robinson, Kwing L Chan, None, A large-eddy simulation of turbulent compressible convection: differential rotation in the solar convection zone Monthly Notices of the Royal Astronomical Society. ,vol. 321, pp. 723- 732 ,(2001) , 10.1046/J.1365-8711.2001.04036.X
Frank Robinson, Kwing Chan, Non-Boussinesq simulations of Rayleigh-Benard convection in a perfect gas Physics of Fluids. ,vol. 16, pp. 1321- 1333 ,(2004) , 10.1063/1.1689350
S. R. Lantz, Y. Fan, Anelastic Magnetohydrodynamic Equations for Modeling Solar and Stellar Convection Zones The Astrophysical Journal Supplement Series. ,vol. 121, pp. 247- 264 ,(1999) , 10.1086/313187
Piotr K. Smolarkiewicz, Janusz A. Pudykiewicz, A Class of Semi-Lagrangian Approximations for Fluids Journal of the Atmospheric Sciences. ,vol. 49, pp. 2082- 2096 ,(1992) , 10.1175/1520-0469(1992)049<2082:ACOSLA>2.0.CO;2