A robust approach to the measurement of Farrell efficiency

作者: Jati K. Sengupta

DOI: 10.1080/00036848800000010

关键词:

摘要: Measurement of efficiency the frontier production function by Farrell's convex hull method is generalized here in two aspects. One develops a minimax estimation following Chebyshev principle and other dummy-variable stratifying entire data set before ordinary regressions are performed to estimate frontier. An empirical application educational functions illustrates these methods.

参考文章(14)
Jati K. Sengupta, Recent Nonparametric Measures of Productive Efficiency Springer, Dordrecht. pp. 169- 194 ,(1988) , 10.1007/978-94-009-3677-5_10
M. J. Farrell, M. Fieldhouse, Estimating Efficient Production Functions Under Increasing Returns to Scale Journal of the Royal Statistical Society: Series A (General). ,vol. 125, pp. 252- 267 ,(1962) , 10.2307/2982329
Vic Barnett, Toby Lewis, Outliers in Statistical Data ,(1978)
Rajiv D. Banker, Richard C. Morey, Efficiency Analysis for Exogenously Fixed Inputs and Outputs Operations Research. ,vol. 34, pp. 513- 521 ,(1986) , 10.1287/OPRE.34.4.513
Jati K. Sengupta, Raymond E. Sfeir, Production Frontier Estimates of Scale in Public Schools in California. Economics of Education Review. ,vol. 5, pp. 297- 307 ,(1986) , 10.1016/0272-7757(86)90081-6
Jati K. Sengupta, Data envelopment analysis for efficiency measurement in the stochastic case Computers & Operations Research. ,vol. 14, pp. 117- 129 ,(1987) , 10.1016/0305-0548(87)90004-9
C. P. Timmer, Using a Probabilistic Frontier Production Function to Measure Technical Efficiency Journal of Political Economy. ,vol. 79, pp. 776- 794 ,(1971) , 10.1086/259787
Raymond J. Kopp, W.Erwin Diewert, The decomposition of frontier cost function deviations into measures of technical and allocative efficiency Journal of Econometrics. ,vol. 19, pp. 319- 331 ,(1982) , 10.1016/0304-4076(82)90008-2
S. N. Afriat, Efficiency Estimation of Production Functions International Economic Review. ,vol. 13, pp. 568- 598 ,(1972) , 10.2307/2525845