Invariant imbedding and Riccati transformations

作者: Michael A. Golberg

DOI: 10.1016/0096-3003(75)90027-2

关键词:

摘要: From its inception, the theory of invariant imbedding has been concerned with study various relations between inputs and outputs physical processes. Where processes could be modelled by differential or integro-differential equations, these ideas have led to heuristic development functional relationships for solutions equations. In this work, we show that a general class two point boundary value problems can obtained from mathematical arguments rather than ones. The principal result is establishment equivalence solving family determining existence transformations on set given We refer as Riccati transformations. They are shown determined initial which generalize equations previous authors. work in coordinate free setting Banach space. usefulness approach able readily extend our results nonlocal multipoint conditions. An indication made how similar applies difference

参考文章(15)
M. R. Scott, L. F. Shampine, G. M. Wing, Invariant imbedding and the calculation of eigenvalues for Sturm-Liouville systems Computing. ,vol. 4, pp. 10- 23 ,(1969) , 10.1007/BF02236538
Michael A Golberg, Multipoint boundary value problems and generalized invariant imbedding equations Journal of Mathematical Analysis and Applications. ,vol. 33, pp. 335- 340 ,(1971) , 10.1016/0022-247X(71)90059-X
G.Milton Wing, INVARIANT IMBEDDING AND TRANSPORT PROBLEMS WITH INTERNAL SOURCES Journal of Mathematical Analysis and Applications. ,vol. 13, pp. 361- 369 ,(1966) , 10.1016/0022-247X(66)90094-1
R. E. Bellman, H. H. Kagiwada, R. E. Kalaba, D. G. B. Edelen, Invariant Imbedding and a Reformulation of the Internal Intensity Problem in Radiative Transfer Theory Monthly Notices of the Royal Astronomical Society. ,vol. 132, pp. 183- 191 ,(1966) , 10.1093/MNRAS/132.1.183
Michael A Golberg, Invariant imbedding for differential equations with integral boundary conditions Journal of Mathematical Analysis and Applications. ,vol. 38, pp. 92- 105 ,(1972) , 10.1016/0022-247X(72)90120-5
Paul Nelson, Melvin R Scott, INTERNAL VALUES IN PARTICLE TRANSPORT BY THE METHOD OF INVARIANT IMBEDDING. Journal of Mathematical Analysis and Applications. ,vol. 34, pp. 628- 643 ,(1971) , 10.1016/0022-247X(71)90102-8
G. H. Meyer, On a General Theory of Characteristics and the Method of Invariant Imbedding SIAM Journal on Applied Mathematics. ,vol. 16, pp. 488- 509 ,(1968) , 10.1137/0116039
Michael A Golberg, A generalized invariant imbedding equation III non-linear boundary conditions Journal of Mathematical Analysis and Applications. ,vol. 35, pp. 209- 214 ,(1971) , 10.1016/0022-247X(71)90245-9
R. Bellman, H. Kagiwada, R. Kalaba, Invariant imbedding and nonvariational principles in analytical dynamics International Journal of Non-Linear Mechanics. ,vol. 1, pp. 51- 55 ,(1966) , 10.1016/0020-7462(66)90018-7
Paul B. Bailey, G. Milton Wing, Some Recent Developments in Invariant Imbedding with Applications Journal of Mathematical Physics. ,vol. 6, pp. 453- 462 ,(1965) , 10.1063/1.1704294