Parallel K-Prototypes Clustering with High Efficiency and Accuracy

作者: Hiba Jridi , Mohamed Aymen Ben HajKacem , Nadia Essoussi

DOI: 10.1007/978-3-030-59065-9_29

关键词:

摘要: … KP-S: a spark-based design of the k-prototypes clustering for big data. In: 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA), pp. 557–563…

参考文章(33)
Vladimir Gorodetsky, Big Data: Opportunities, Challenges and Solutions international conference on application of information and communication technologies. pp. 3- 22 ,(2014) , 10.1007/978-3-319-13206-8_1
Jinchao Ji, Tian Bai, Chunguang Zhou, Chao Ma, Zhe Wang, An improved k-prototypes clustering algorithm for mixed numeric and categorical data Neurocomputing. ,vol. 120, pp. 590- 596 ,(2013) , 10.1016/J.NEUCOM.2013.04.011
Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne, Seung-Hee Bae, Judy Qiu, Geoffrey Fox, Twister: a runtime for iterative MapReduce high performance distributed computing. pp. 810- 818 ,(2010) , 10.1145/1851476.1851593
Amir Ahmad, Lipika Dey, A k-mean clustering algorithm for mixed numeric and categorical data data and knowledge engineering. ,vol. 63, pp. 503- 527 ,(2007) , 10.1016/J.DATAK.2007.03.016
Anil K. Jain, Data clustering: 50 years beyond K-means international conference on pattern recognition. ,vol. 31, pp. 651- 666 ,(2010) , 10.1016/J.PATREC.2009.09.011
Jack Dongarra, Steven Huss-Lederman, David Walker, Steve Otto, Marc Snir, Marc Snir, MPI - The Complete Reference: Volume 1, The MPI Core ,(1998)
Zhi Zheng, Maoguo Gong, Jingjing Ma, Licheng Jiao, Qiaodi Wu, Unsupervised evolutionary clustering algorithm for mixed type data IEEE Congress on Evolutionary Computation. pp. 1- 8 ,(2010) , 10.1109/CEC.2010.5586136
Richard M. Yoo, Anthony Romano, Christos Kozyrakis, Phoenix rebirth: Scalable MapReduce on a large-scale shared-memory system ieee international symposium on workload characterization. pp. 198- 207 ,(2009) , 10.1109/IISWC.2009.5306783
Weizhong Zhao, Huifang Ma, Qing He, Parallel K-Means Clustering Based on MapReduce international conference on cloud computing. ,vol. 5931, pp. 674- 679 ,(2009) , 10.1007/978-3-642-10665-1_71