Sparse Signal Recovery and Acquisition with Graphical Models

作者: Volkan Cevher , Piotr Indyk , Lawrence Carin , Richard Baraniuk

DOI: 10.1109/MSP.2010.938029

关键词:

摘要: … signal processing, machine learning, and communications … signal processing context, we refer to x ∈ RN as the signal, y … seen that graphical models (GM) are emerging to effectively …

参考文章(31)
Moses Charikar, Kevin Chen, Martin Farach-Colton, Finding Frequent Items in Data Streams international colloquium on automata languages and programming. ,vol. 312, pp. 693- 703 ,(2002) , 10.1016/S0304-3975(03)00400-6
Nir Friedman, Daniel L. Koller, Probabilistic graphical models : principles and techniques The MIT Press. ,(2009)
Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, Lawrence K Saul, None, An introduction to variational methods for graphical models Machine Learning. ,vol. 37, pp. 105- 161 ,(1999) , 10.1023/A:1007665907178
R. Berinde, A. C. Gilbert, P. Indyk, H. Karloff, M. J. Strauss, Combining geometry and combinatorics: A unified approach to sparse signal recovery allerton conference on communication, control, and computing. pp. 798- 805 ,(2008) , 10.1109/ALLERTON.2008.4797639
Christopher M. Bishop, Pattern Recognition and Machine Learning ,(2006)
Babak Hassibi, Weiyu Xu, A. Robert Calderbank, Sina Jafarpour, Efficient and Robust Compressed Sensing using High-Quality Expander Graphs arXiv: Information Theory. ,(2008)
Anna Gilbert, Piotr Indyk, Sparse Recovery Using Sparse Matrices Proceedings of the IEEE. ,vol. 98, pp. 937- 947 ,(2010) , 10.1109/JPROC.2010.2045092
Cristian Estan, George Varghese, New directions in traffic measurement and accounting ACM Transactions on Computer Systems. ,vol. 21, pp. 270- 313 ,(2003) , 10.1145/859716.859719
Albert Cohen, Wolfgang Dahmen, Ronald DeVore, Compressed sensing and best k-term approximation Journal of the American Mathematical Society. ,vol. 22, pp. 211- 231 ,(2008) , 10.1090/S0894-0347-08-00610-3
Lihan He, L. Carin, Exploiting Structure in Wavelet-Based Bayesian Compressive Sensing IEEE Transactions on Signal Processing. ,vol. 57, pp. 3488- 3497 ,(2009) , 10.1109/TSP.2009.2022003