A short proof of stability of topological order under local perturbations

作者: Sergey Bravyi , Matthew B. Hastings

DOI: 10.1007/S00220-011-1346-2

关键词:

摘要: Recently, the stability of certain topological phases matter under weak perturbations was proven. Here, we present a short, alternate proof same result. We consider models quantum order for which unperturbed Hamiltonian $H_0$ can be written as sum local pairwise commuting projectors on $D$-dimensional lattice. perturbed $H=H_0+V$ involving generic perturbation $V$ that short-range bounded-norm interactions. prove if strength is below constant threshold value then $H$ has well-defined spectral bands originating from low-lying eigenvalues $H_0$. These are separated rest spectrum and each other by gap. The width band smallest eigenvalue decays faster than any power lattice size.

参考文章(26)
Nilanjana Datta, Tom Kennedy, Expansions for One Quasiparticle States in Spin 1/2 Systems Journal of Statistical Physics. ,vol. 108, pp. 373- 399 ,(2002) , 10.1023/A:1015713005441
M. B. Hastings, Solving gapped Hamiltonians locally Physical Review B. ,vol. 73, pp. 085115- ,(2006) , 10.1103/PHYSREVB.73.085115
M. B. Hastings, Lieb-Schultz-Mattis in higher dimensions Physical Review B. ,vol. 69, pp. 104431- ,(2004) , 10.1103/PHYSREVB.69.104431
A. E. Ingham, A Note on Fourier Transforms Journal of the London Mathematical Society. ,vol. s1-9, pp. 29- 32 ,(1934) , 10.1112/JLMS/S1-9.1.29
S. Bravyi, M. B. Hastings, F. Verstraete, Lieb-Robinson bounds and the generation of correlations and topological quantum order. Physical Review Letters. ,vol. 97, pp. 050401- 050401 ,(2006) , 10.1103/PHYSREVLETT.97.050401
Bruno Nachtergaele, Robert Sims, Lieb-Robinson Bounds and the Exponential Clustering Theorem Communications in Mathematical Physics. ,vol. 265, pp. 119- 130 ,(2006) , 10.1007/S00220-006-1556-1
D. A. Yarotsky, Perturbations of ground states in weakly interacting quantum spin systems Journal of Mathematical Physics. ,vol. 45, pp. 2134- 2152 ,(2004) , 10.1063/1.1705718
Elliott H. Lieb, Derek W. Robinson, The Finite Group Velocity of Quantum Spin Systems Communications in Mathematical Physics. ,vol. 28, pp. 251- 257 ,(1972) , 10.1007/BF01645779