The graded possibilistic clustering model

作者: F. Masulli , S. Rovetta

DOI: 10.1109/IJCNN.2003.1223483

关键词:

摘要: This paper presents the graded possibilistic model. After reviewing some clustering algorithms derived from c-Means, we provide a unified perspective on these algorithms, focused memberships rather than cost function. Then concept of possibility is introduced. partially version fuzzy model, as compared to Krishnapuram and Keller's clustering. We outline basic algorithm highlight different properties attainable by means experimental demonstrations.

参考文章(16)
Geoffrey H. Ball, David J. Hall, A clustering technique for summarizing multivariate data Behavioral Science. ,vol. 12, pp. 153- 155 ,(1967) , 10.1002/BS.3830120210
Antonio Flores-Sintas, JoséM. Cadenas, Fernando Martin, A local geometrical properties application to fuzzy clustering Fuzzy Sets and Systems. ,vol. 100, pp. 245- 256 ,(1998) , 10.1016/S0165-0114(97)00038-9
Hisao Ishibuchi, Manabu Nii, Neural networks for soft decision making Fuzzy Sets and Systems. ,vol. 115, pp. 121- 140 ,(2000) , 10.1016/S0165-0114(99)00022-6
G.P. Drago, S. Ridella, Possibility and Necessity Pattern Classification using an Interval Arithmetic Perceptron Neural Computing and Applications. ,vol. 8, pp. 40- 52 ,(1999) , 10.1007/S005210050006
Kenneth Rose, Eitan Gurewitz, Geoffrey Fox, A deterministic annealing approach to clustering Pattern Recognition Letters. ,vol. 11, pp. 589- 594 ,(1990) , 10.1016/0167-8655(90)90010-Y
C. L. Blake, UCI Repository of machine learning databases www.ics.uci.edu/〜mlearn/MLRepository.html. ,(1998)
C. Chow, On optimum recognition error and reject tradeoff IEEE Transactions on Information Theory. ,vol. 16, pp. 41- 46 ,(1970) , 10.1109/TIT.1970.1054406
R. Krishnapuram, J.M. Keller, A possibilistic approach to clustering IEEE Transactions on Fuzzy Systems. ,vol. 1, pp. 98- 110 ,(1993) , 10.1109/91.227387