Boundary element methods for variational inequalities

作者: O. Steinbach

DOI: 10.1007/S00211-013-0554-4

关键词:

摘要: In this paper we present a priori error estimates for the Galerkin solution of variational inequalities which are formulated in fractional Sobolev trace spaces, i.e. $$\widetilde{H}^{1/2}(\Gamma )$$ H ? 1 / 2 ( Γ ) . addition to energy norm also provide, by applying Aubin---Nitsche trick inequalities, lower order spaces including $$L_2(\Gamma L The resulting discrete inequality is solved using semi-smooth Newton method, equivalent an active set strategy. A numerical example given confirms theoretical results.

参考文章(29)
Carsten Carstensen, Joachim Gwinner, FEM and BEM Coupling for a Nonlinear Transmission Problem with Signorini Contact SIAM Journal on Numerical Analysis. ,vol. 34, pp. 1845- 1864 ,(1997) , 10.1137/S0036142995281139
Ph. Clément, Approximation by finite element functions using local regularization Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique. ,vol. 9, pp. 77- 84 ,(1975) , 10.1051/M2AN/197509R200771
J. Gwinner, E. P. Stephan, A boundary element procedure for contact problems in plane linear elastostatics Mathematical Modelling and Numerical Analysis. ,vol. 27, pp. 457- 480 ,(1993) , 10.1051/M2AN/1993270404571
Franco Brezzi, William W. Hager, P. A. Raviart, Error Estimates for the Finite Element Solution of Variational Inequalities. Part I. Primal Theory. Numerische Mathematik. ,vol. 28, pp. 431- 443 ,(1977) , 10.1007/BF01404345
George Isac, Complementarity Problems ,(1992)
W. McLean, O. Steinbach, Boundary element preconditioners for a hypersingular integral equation on an interval Advances in Computational Mathematics. ,vol. 11, pp. 271- 286 ,(1999) , 10.1023/A:1018944530343