Impact expansions in classical and semiclassical scattering.

作者: Felix T. Smith , Raymond P. Marchi , Kent G. Dedrick

DOI: 10.1103/PHYSREV.150.79

关键词:

摘要: In the energy regime appropriate to classical and semiclassical atomic scattering theory, experimental data on differential cross sections $\ensuremath{\sigma}(\ensuremath{\theta}, E)$ interference patterns are conveniently analyzed through use of reduced variables such as $\ensuremath{\tau}=E\ensuremath{\theta}$, $\ensuremath{\rho}=\ensuremath{\theta}$ $sin\ensuremath{\theta}\ensuremath{\sigma}(\ensuremath{\theta}, E)$. forward scattering, relationship is leading term an impact expansion type $\ensuremath{\rho}(\ensuremath{\tau}, E)=\ensuremath{\Sigma}{n}^{}{E}^{\ensuremath{-}n}{\ensuremath{\rho}}_{n}(\ensuremath{\tau})$. The ${\ensuremath{\rho}}_{n}(\ensuremath{\tau})$ obtained by eliminating parameter $b$ from expansions functions $\ensuremath{\tau}(b, E)=\ensuremath{\Sigma}{n}^{}{E}^{\ensuremath{-}n}{\ensuremath{\tau}}_{n}(b)$, introduced Lehmann Leibfried. Backscattering be E)=\ensuremath{\Sigma}{n}^{}{(\ensuremath{\pi}\ensuremath{-}\ensuremath{\theta})}^{2n}{\ensuremath{\sigma}}_{n}(E)$, derived like $\ensuremath{\pi}\ensuremath{-}\ensuremath{\theta}=\ensuremath{\phi}(b, E)=\ensuremath{\Sigma}{n}^{}{b}^{2n+1}{\ensuremath{\phi}}_{n}(E)$. If arises a potential $V(r)$, coefficients ${\ensuremath{\tau}}_{n}(b)$, ${\ensuremath{\phi}}_{n}(E)$, etc., expressed in form integrals over potentials which lend themselves inversion procedures similar Firsov's lower bound can extracted data. addition deriving these testing them several realistic interatomic potentials, we describe how they suggest applied presentation analysis

参考文章(19)
D R Bates, D A Williams, Low energy collisions between hydrogen atoms and protons Proceedings of the Physical Society. ,vol. 83, pp. 425- 433 ,(1964) , 10.1088/0370-1328/83/3/310
Donald C. Lorents, William Aberth, ELASTIC DIFFERENTIAL SCATTERING OF He$sup +$ IONS BY He IN THE 20-600 eV RANGE Physical Review. ,vol. 139, pp. 1017- 1024 ,(1965) , 10.1103/PHYSREV.139.A1017
Edgar Everhart, ANALYSIS OF THE He$sup +$ ON He COLLISION Physical Review. ,vol. 132, pp. 2083- 2090 ,(1963) , 10.1103/PHYSREV.132.2083
Chr Lehmann, G. Leibfried, Higher order momentum approximations in classical collision theory European Physical Journal. ,vol. 172, pp. 465- 487 ,(1963) , 10.1007/BF01378911
G. Leibfried, Th. Plesser, The convergence behaviour of expansions in the classical collision theory Zeitschrift f�r Physik. ,vol. 187, pp. 411- 420 ,(1965) , 10.1007/BF01332518
Felix T. Smith, Classical and Quantal Scattering. I. The Classical Action Journal of Chemical Physics. ,vol. 42, pp. 2419- 2426 ,(1965) , 10.1063/1.1696310
W. Aberth, D. C. Lorents, R. P. Marchi, F. T. Smith, Effect of Nuclear Symmetry in Ion-Atom Scattering Physical Review Letters. ,vol. 14, pp. 776- 778 ,(1965) , 10.1103/PHYSREVLETT.14.776
Kenneth W Ford, John A Wheeler, Semiclassical description of scattering Annals of Physics. ,vol. 7, pp. 259- 286 ,(1959) , 10.1016/0003-4916(59)90026-0
Raymond P. Marchi, Felix T. Smith, Theory of Elastic Differential Scattering in Low-Energy He + +He Collisions Physical Review. ,vol. 139, pp. 1025- 1038 ,(1965) , 10.1103/PHYSREV.139.A1025
F. T. Smith, D. C. Lorents, W. Aberth, R. P. Marchi, Perturbation induced in elastic scattering by crossing of molecular states. Physical Review Letters. ,vol. 15, pp. 742- 746 ,(1965) , 10.1103/PHYSREVLETT.15.742