Text Mining and Information Extraction

作者: Moty Ben-Dov , Ronen Feldman

DOI: 10.1007/978-0-387-09823-4_42

关键词:

摘要: Text Mining is the automatic discovery of new, previously unknown information, by analysis various textual resources. mining starts extracting facts and events from sources then enables forming new hypotheses that are further explored traditional Data data methods. In this chapter we will define text describe three main approaches for performing information extraction. addition, how can visually display analyze outcome extraction process.

参考文章(134)
Richard S. Forsyth, NEW DIRECTIONS IN TEXT CATEGORIZATION Springer Berlin Heidelberg. pp. 151- 185 ,(1999) , 10.1007/978-3-642-58648-4_11
Yuji Matsumoto, Hiroya Takamura, Feature Space Restructuring for SVMs with Application to Text Categorization empirical methods in natural language processing. ,(2001)
Giuseppe Attardi, Sergio Di Marco, Davide Salvi, F Sebastiani, Categorisation by Context. Journal of Universal Computer Science. ,vol. 4, pp. 719- 736 ,(1998)
Kon Fan Low, Chao Yang Ho, Wai Lam, Using a Bayesian Network Induction Approach for Text Categorization. international joint conference on artificial intelligence. pp. 745- 750 ,(1997)
Brigitte Bigi, Using Kullback-Leibler Distance for Text Categorization Lecture Notes in Computer Science. ,vol. 2633, pp. 305- 319 ,(2003) , 10.1007/3-540-36618-0_22
Prasad Tadepalli, Ray Liere, Active Learning with Committees for Text Categorization national conference on artificial intelligence. pp. 591- 596 ,(1997)
B. Keller, R. Lutz, Learning SCFGs from Corpora by a Genetic Algorithm international conference on adaptive and natural computing algorithms. pp. 210- 214 ,(1998) , 10.1007/978-3-7091-6492-1_46
Aaron Kershenbaum, Robert Schiaffino, Keitha Murray, Stephen D'Alessio, The effect of using hierarchical classifiers in text categorization riao conference. pp. 302- 313 ,(2000)