Finite-element modeling of intrastromal ring segment implantation into a hyperelastic cornea

作者: Sabine Kling , Susana Marcos

DOI: 10.1167/IOVS.12-10852

关键词:

摘要: PURPOSE. Intrastromal corneal-ring segments (ICRSs) are applied to improve highly distorted vision in keratoconic, myopic, and astigmatic patients. Selections of ICRS geometry position primarily based on empirical nomograms. We developed a finite-element model (FEM) predicting the corneal response different geometries normal keratoconic corneas. METHODS. A two-dimensional FEM was built proprietary software (ANSYS-APDL), consisting hyperelastic ocular tissues (cornea, limbus, sclera) triangular/hexagonal poly(methyl methacrylate). An incrustation considering local material addition rigidity increase at also for triangular geometric difference between its base (plane) tunnel (parallel surface). Different heights (150‐350 lm) optical zones (4.4‐6.6 mm) were simulated. axis-symmetric keratoconus studied, where elasticity decreased locally. RESULTS. (height zone) had significant influence power: changes from 4.08 � 17.7 diopters (D) (healthy)/3.31 20.5 D (keratoconic) observed. Central thickness predicted by up 38.5 lm (healthy)/97.9 (keratoconic). Spherical aberration changed upon implantation. The protrusion posterior cornea behind rings well predicted. confirmed clinically reported trends effect ring geometry. CONCLUSIONS. is powerful tool study combination with individual biomechanical properties patients holds promise predictability surgery. (Invest Ophthalmol Vis Sci. 2013;54:881‐889) DOI:10.1167/ iovs.12-10852

参考文章(52)
Naoyuki Maeda, Takashi Fujikado, Teruhito Kuroda, Toshifumi Mihashi, Yoko Hirohara, Kohji Nishida, Hitoshi Watanabe, Yasuo Tano, Wavefront aberrations measured with Hartmann-Shack sensor in patients with keratoconus Ophthalmology. ,vol. 109, pp. 1996- 2003 ,(2002) , 10.1016/S0161-6420(02)01279-4
Carlos Dorronsoro, Daniel Pascual, Pablo Pérez-Merino, Sabine Kling, Susana Marcos, Dynamic OCT measurement of corneal deformation by an air puff in normal and cross-linked corneas Biomedical Optics Express. ,vol. 3, pp. 473- 487 ,(2012) , 10.1364/BOE.3.000473
Charalambos S Siganos, George D Kymionis, Nikos Kartakis, Michalis A Theodorakis, Nikos Astyrakakis, Ioannis G Pallikaris, Management of keratoconus with Intacs American Journal of Ophthalmology. ,vol. 135, pp. 64- 70 ,(2003) , 10.1016/S0002-9394(02)01824-X
ANNE M. V. BROOKS, IAN F. ROBERTSON, ANNE-MARIE MAHONEY, OCULAR RIGIDITY AND INTRAOCULAR PRESSURE IN KERATOCONUS Australian and New Zealand Journal of Ophthalmology. ,vol. 12, pp. 317- 324 ,(1984) , 10.1111/J.1442-9071.1984.TB01175.X
Sergio Ortiz, Damian Siedlecki, Laura Remon, Susana Marcos, Optical coherence tomography for quantitative surface topography Applied Optics. ,vol. 48, pp. 6708- 6715 ,(2009) , 10.1364/AO.48.006708
Jürgen Kampmeier, Benno Radt, Reginald Birngruber, Ralf Brinkmann, Thermal and biomechanical parameters of porcine cornea. Cornea. ,vol. 19, pp. 355- 363 ,(2000) , 10.1097/00003226-200005000-00020
Sabine Kling, Laura Remon, Alfonso Pérez-Escudero, Jesus Merayo-Lloves, Susana Marcos, Corneal Biomechanical Changes after Collagen Cross-Linking from Porcine Eye Inflation Experiments Investigative Opthalmology & Visual Science. ,vol. 51, pp. 3961- 3968 ,(2010) , 10.1167/IOVS.09-4536
Gabriel Simon, Jean-Marie Parel, William Lee, Gerard N. Kervick, Gel injection adjustable keratoplasty Graefes Archive for Clinical and Experimental Ophthalmology. ,vol. 229, pp. 418- 424 ,(1990) , 10.1007/BF00166303
Troels T. Andreassen, Anders Hjorth Simonsen, Hans Oxlund, Biomechanical properties of keratoconus and normal corneas Experimental Eye Research. ,vol. 31, pp. 435- 441 ,(1980) , 10.1016/S0014-4835(80)80027-3
Ira S. Nash, Peter R. Greene, C.Stephen Foster, Comparison of mechanical properties of keratoconus and normal corneas. Experimental Eye Research. ,vol. 35, pp. 413- 424 ,(1982) , 10.1016/0014-4835(82)90040-9