Optimizing Intersection-Over-Union in Deep Neural Networks for Image Segmentation

作者: Md Atiqur Rahman , Yang Wang

DOI: 10.1007/978-3-319-50835-1_22

关键词:

摘要: We consider the problem of learning deep neural networks (DNNs) for object category segmentation, where the goal is to label each pixel in an image as being part of a given object (…

参考文章(22)
Ross Girshick, Jitendra Malik, Bharath Hariharan, Pablo Arbeláez, Simultaneous Detection and Segmentation european conference on computer vision. pp. 297- 312 ,(2014) , 10.1007/978-3-319-10584-0_20
Matthew B. Blaschko, Christoph H. Lampert, Learning to Localize Objects with Structured Output Regression european conference on computer vision. pp. 2- 15 ,(2008) , 10.1007/978-3-540-88682-2_2
Jonathan Long, Evan Shelhamer, Trevor Darrell, Fully convolutional networks for semantic segmentation computer vision and pattern recognition. pp. 3431- 3440 ,(2015) , 10.1109/CVPR.2015.7298965
Andrea Vedaldi, Karel Lenc, MatConvNet: Convolutional Neural Networks for MATLAB acm multimedia. pp. 689- 692 ,(2015) , 10.1145/2733373.2807412
Vittal Premachandran, Daniel Tarlow, Dhruv Batra, Empirical Minimum Bayes Risk Prediction: How to Extract an Extra Few % Performance from Vision Models with Just Three More Parameters computer vision and pattern recognition. pp. 1043- 1050 ,(2014) , 10.1109/CVPR.2014.137
Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, Andrew Zisserman, The Pascal Visual Object Classes (VOC) Challenge International Journal of Computer Vision. ,vol. 88, pp. 303- 338 ,(2010) , 10.1007/S11263-009-0275-4
Mani Ranjbar, Tian Lan, Yang Wang, Steven N. Robinovitch, Ze-Nian Li, Greg Mori, Optimizing Nondecomposable Loss Functions in Structured Prediction IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 35, pp. 911- 924 ,(2013) , 10.1109/TPAMI.2012.168
Sebastian Nowozin, Optimal Decisions from Probabilistic Models: The Intersection-over-Union Case computer vision and pattern recognition. pp. 548- 555 ,(2014) , 10.1109/CVPR.2014.77
Thorsten Joachims, A support vector method for multivariate performance measures Proceedings of the 22nd international conference on Machine learning - ICML '05. pp. 377- 384 ,(2005) , 10.1145/1102351.1102399
Yisong Yue, Thomas Finley, Filip Radlinski, Thorsten Joachims, A support vector method for optimizing average precision international acm sigir conference on research and development in information retrieval. pp. 271- 278 ,(2007) , 10.1145/1277741.1277790