Strongly self-absorbing C*-algebras

作者: Andrew S. Toms , Wilhelm Winter

DOI: 10.1090/S0002-9947-07-04173-6

关键词:

摘要: Say that a separable, unital C*-algebra V ? C is strongly self absorbing if there exists an isomorphism such lx> ai>e approximately unitarily equivalent *-homomorphisms. We study this class of algebras, which includes the Cuntz algebras ?2, Ooo, UHF infinite type, Jiang-Su algebra Z and tensor products ?00 with type. Given self-absorbing we characterise when separable absorbs tensorially (i.e., P-stable), prove closure properties for Testable C* algebras. Finally, compute possible If-groups number classification results suggest examples listed above are only C*-algebras.

参考文章(34)
George A. Elliott, The Classification Problem for Amenable C*-Algebras Birkhäuser Basel. pp. 922- 932 ,(1995) , 10.1007/978-3-0348-9078-6_85
Guihua Gong, Xinhui Jiang, Hongbing Su, Obstructions to Z-Stability for Unital Simple C -Algebras ,(2000)
Masamichi Takesaki, Theory of Operator Algebras II ,(1979)
Søren Eilers, Dorte Olesen, C-Algebras and Their Automorphism Groups ,(1979)
N. Christopher Phillips, A Classification Theorem for Nuclear Purely Infinite Simple C -Algebras 1 Documenta Mathematica. ,vol. 5, pp. 49- 114 ,(2000)
MIKAEL RØRDAM, THE STABLE AND THE REAL RANK OF ${\mathcal Z}$-ABSORBING C*-ALGEBRAS International Journal of Mathematics. ,vol. 15, pp. 1065- 1084 ,(2004) , 10.1142/S0129167X04002661
Jesper Villadsen, On the stable rank of simple C*-algebras Journal of the American Mathematical Society. ,vol. 12, pp. 1091- 1102 ,(1999) , 10.1090/S0894-0347-99-00314-8
Joachim Cuntz, Simple $C^*$-algebras generated by isometries Communications in Mathematical Physics. ,vol. 57, pp. 173- 185 ,(1977) , 10.1007/BF01625776
EBERHARD KIRCHBERG, WILHELM WINTER, COVERING DIMENSION AND QUASIDIAGONALITY International Journal of Mathematics. ,vol. 15, pp. 63- 85 ,(2004) , 10.1142/S0129167X04002119