Fluctuation-dissipation relations in the presence of multiplicative noise

作者: R. Vasudevan , K. V. Parthasarathy

DOI: 10.1080/00411458708204610

关键词:

摘要: Abstract This paper analyses the modifications that are warranted in fluctuation-dissipation theorems by addition of a multiplicative noise Langevin equation modeling dynamics system. The concepts relating Stratonovich and Ito integrals employed to derive new relations for first second virial theorem. For three dimensional case, results mean square angular momentum obtained corresponding with noise.

参考文章(17)
D. Kannan, Random Integrodifferential Equations Probabilistic Analysis and Related Topics#R##N#Volume 1. pp. 87- 167 ,(1978) , 10.1016/B978-0-12-095601-2.50008-0
A T Bharucha-Reid, Probabilistic analysis and related topics Academic Press. ,(1978)
Samuel Karlin, Howard E Taylor, A second course in stochastic processes ,(1981)
John G. Kirkwood, The Statistical Mechanical Theory of Transport Processes I. General Theory The Journal of Chemical Physics. ,vol. 14, pp. 180- 201 ,(1946) , 10.1063/1.1724117
T. T. Soong, J. L. Bogdanoff, Random Differential Equations in Science and Engineering Journal of Applied Mechanics. ,vol. 41, pp. 1148- 1148 ,(1974) , 10.1115/1.3423466
D. Kannman, A. T. Bharucha-Reid, Random integral equation formulation of a generalized Langevin equation Journal of Statistical Physics. ,vol. 5, pp. 209- 233 ,(1972) , 10.1007/BF01023743
Richard E. Mortensen, Mathematical problems of modeling stochastic nonlinear dynamic systems Journal of Statistical Physics. ,vol. 1, pp. 271- 296 ,(1969) , 10.1007/BF01007481
H. Nyquist, Thermal Agitation of Electric Charge in Conductors Physical Review. ,vol. 32, pp. 110- 113 ,(1928) , 10.1103/PHYSREV.32.110