q-deformed phase space and its lattice structure

作者: M. Fichtmüller , A. Lorek , J. Wess

DOI: 10.1007/BF02907014

关键词:

摘要: A q-deformed two-dimensional phase space is studied as a model for noncommutative space. lattice structure arises that can be interpreted spontaneous breaking of continuous symmetry. The eigenfunctions Hamiltonian lives on such are derived wavefunctions in ordinaryx-space.

参考文章(8)
Jochen Schwenk, q deformed fourier theory arXiv: High Energy Physics - Theory. ,(1994)
Julius Wess, Bruno Zumino, Covariant differential calculus on the quantum hyperplane Nuclear Physics B - Proceedings Supplements. ,vol. 18, pp. 302- 312 ,(1991) , 10.1016/0920-5632(91)90143-3
J. Schwenk, J. Wess, A q-deformed quantum mechanical toy model Physics Letters B. ,vol. 291, pp. 273- 277 ,(1992) , 10.1016/0370-2693(92)91044-A
A. Lorek, J. Wess, Dynamical symmetries in q -deformed quantum mechanics European Physical Journal C. ,vol. 67, pp. 671- 679 ,(1995) , 10.1007/BF01553994
A. Hebecker, S. Schreckenberg, J. Schwenk, W. Weich, J. Wess, Representations of aq-deformed Heisenberg algebra Zeitschrift für Physik C Particles and Fields. ,vol. 64, pp. 355- 359 ,(1994) , 10.1007/BF01557410
T.L. Curtright, C.K. Zachos, Deforming maps for quantum algebras Physics Letters B. ,vol. 243, pp. 237- 244 ,(1990) , 10.1016/0370-2693(90)90845-W
Tom H. Koornwinder, René F. Swarttouw, On q-analogues of the Fourier and Hankel transforms Transactions of the American Mathematical Society. ,vol. 333, pp. 445- 461 ,(1992) , 10.1090/S0002-9947-1992-1069750-0
Hartland S. Snyder, Quantized Space-Time Physical Review. ,vol. 71, pp. 38- 41 ,(1947) , 10.1103/PHYSREV.71.38