On the Kawauchi conjecture about the Conway polynomial of achiral knots

作者: Cam Van Quach Hongler , Claude Weber , Nicola Ermotti

DOI:

关键词:

摘要: We give a counterexample to the Kawauchi conjecture on Conway polynomial of achiral knots which asserts that C(z) an knot satisfies splitting property = F(z)F( z) for F(z) with integer coefficients. show Bonahon-Siebenmann decomposition and alternating is reflected in polynomial. More explicitly, true quasi-arborescent counterexamples class must be quasi-polyhedral.

参考文章(15)
Peter R. Cromwell, Knots and Links ,(2004)
Cam Van Quach Hongler, Claude Weber, Link projections and flypes arXiv: Geometric Topology. ,(2009)
James Conant, Chirality and the Conway polynomial arXiv: Geometric Topology. ,(2005)
Akio Kawauchi, H-cobordism. I. The groups among three dimensional homology handles Osaka Journal of Mathematics. ,vol. 13, pp. 567- 590 ,(1976) , 10.18910/8268
CAM VAN QUACH HONGLER, LINKS WITH UNLINKING NUMBER ONE AND CONWAY POLYNOMIALS Journal of Knot Theory and Its Ramifications. ,vol. 08, pp. 887- 900 ,(1999) , 10.1142/S0218216599000560
Lebrecht Goeritz, Knoten und quadratische Formen Mathematische Zeitschrift. ,vol. 36, pp. 647- 654 ,(1933) , 10.1007/BF01188642
Cam Van Quach Hongler, Claude Weber, Nicola Ermotti, A proof of Tait's Conjecture on alternating-achiral knots arXiv: Geometric Topology. ,(2011)
Richard Hartley, Akio Kawauchi, Polynomials of amphicheiral knots Mathematische Annalen. ,vol. 243, pp. 63- 70 ,(1979) , 10.1007/BF01420207
A. Stoimenow, Square numbers and polynomial invariants of achiral knots Mathematische Zeitschrift. ,vol. 255, pp. 703- 719 ,(2007) , 10.1007/S00209-006-0040-0
Louis H. Kauffman, The conway polynomial Topology. ,vol. 20, pp. 101- 108 ,(1981) , 10.1016/0040-9383(81)90017-3