Lie Algebroids Associated with Deformed Schouten Bracket of 2-Vector Fields

作者: Kentaro Mikami , Tadayoshi Mizutani

DOI: 10.1007/978-0-8176-4530-4_10

关键词:

摘要: Given a 2-vector field and closed 1-form on manifold, we consider the set of cotangent vectors which annihilate deformed Schouten bracket by 1-form. We show that if space forms vector bundle, it carries structure Lie algebroid. treat this theorem in category algebroids. As special case, result contains well-known fact 1-jet bundle functions contact manifold has algebroid structure.

参考文章(6)
Alan Weinstein, Ana Cannas da Silva, Geometric Models for Noncommutative Algebras ,(1999)
David Iglesias, Juan C. Marrero, Generalized Lie bialgebroids and Jacobi structures Journal of Geometry and Physics. ,vol. 40, pp. 176- 200 ,(2001) , 10.1016/S0393-0440(01)00032-8
Pavol Ševera, Alan Weinstein, Poisson Geometry with a 3-Form Background Progress of Theoretical Physics Supplement. ,vol. 144, pp. 145- 154 ,(2001) , 10.1143/PTPS.144.145
KENTARO MIKAMI, TADAYOSHI MIZUTANI, INTEGRABILITY OF PLANE FIELDS DEFINED BY 2-VECTOR FIELDS International Journal of Mathematics. ,vol. 16, pp. 197- 212 ,(2005) , 10.1142/S0129167X05002795
Janusz Grabowski, Janusz Grabowski, Giuseppe Marmo, Jacobi structures revisited Journal of Physics A. ,vol. 34, pp. 10975- 10990 ,(2001) , 10.1088/0305-4470/34/49/316
Janusz Grabowski, Giuseppe Marmo, Jacobi structures revisited arXiv: Differential Geometry. ,(2001) , 10.1088/0305-4470/34/49/316