Jacobi structures revisited

作者: Janusz Grabowski , Janusz Grabowski , Giuseppe Marmo

DOI: 10.1088/0305-4470/34/49/316

关键词:

摘要: Jacobi algebroids, i.e. graded Lie brackets on the Grassmann algebra associated with a vector bundle which satisfy property similar to that of brackets, are introduced. They turn out be equivalent generalized algebroids in sense Iglesias and Marrero. bialgebroids defined same manner. A lifting procedure elements this multivector fields total space preserves corresponding is developed. This gives possibility associating canonically algebroid any local Kirillov.

参考文章(29)
Izu Vaisman, The BV-algebra of a Jacobi manifold Annales Polonici Mathematici. ,vol. 73, pp. 275- 290 ,(2000) , 10.4064/AP-73-3-275-290
Y. Kosmann-Schwarzbach, Exact Gerstenhaber Algebras and Lie Bialgebroids Acta Applicandae Mathematicae. ,vol. 41, pp. 153- 165 ,(1995) , 10.1007/BF00996111
K. Mackenzie, Classical lifting processes and multiplicative vector fields Quarterly Journal of Mathematics. ,vol. 49, pp. 59- 85 ,(1998) , 10.1093/QJMATH/49.193.59
Murray Gerstenhaber, The Cohomology Structure of an Associative Ring The Annals of Mathematics. ,vol. 78, pp. 267- ,(1963) , 10.2307/1970343
David Iglesias, Juan C. Marrero, Generalized Lie bialgebroids and Jacobi structures Journal of Geometry and Physics. ,vol. 40, pp. 176- 200 ,(2001) , 10.1016/S0393-0440(01)00032-8
T. J. Willmore, TANGENT AND COTANGENT BUNDLES Bulletin of the London Mathematical Society. ,vol. 7, pp. 218- 219 ,(1975) , 10.1112/BLMS/7.2.218
Janusz Grabowski, Paweł Urbański, Lie algebroids and Poisson-Nijenhuis structures Reports on Mathematical Physics. ,vol. 40, pp. 195- 208 ,(1997) , 10.1016/S0034-4877(97)85916-2
J. Grabowski, P. Urbański, Algebroids — general differential calculi on vector bundles☆ Journal of Geometry and Physics. ,vol. 31, pp. 111- 141 ,(1999) , 10.1016/S0393-0440(99)00007-8
Albert Nijenhuis, R. Richardson, Jr., Deformations of Lie Algebra Structures Indiana University Mathematics Journal. ,vol. 17, pp. 89- 105 ,(1967) , 10.1512/IUMJ.1968.17.17005