A rate equation approach to model the denaturation or replication behavior of the SARS coronavirus.

作者: J. Liu

DOI: 10.1007/S10010-004-0130-2

关键词:

摘要: As a newly emerging virus, little is known about the SARS coronavirus, whose outbreak has brought away several hundred people’s lives over world in year of 2003 and seriously imperiling human health. Revealing denaturation replication mechanisms coronavirus great importance for successfully fighting SARS. However, experiments related to are extremely dangerous therefore restricted only certain specific labs with high safety standard. Clearly, predicting behaviors wide variety environmental conditions, which not easily accessible, thus critically necessary. In this study, we proposed quantify survival time either vitro or vivo, through introducing thermal rate process models established from well-known Arrhenius law. The complex physical chemical can then be attributed its activation energy, frequency factor, damage function as well surrounding conditions. Based on first data stability resistance measured by members WHO laboratory network, coefficients involved above equations were estimated time. Predictions different temperature scale performed. It was found theoretically that, such falls an range, say seconds almost infinitely long low environment, already being supported currently available tests data. Applications present theory interpret existing phenomena presented their implementations developing new technical ways prevention clinical therapy discussed. Uncertainties theoretical also analyzed predicted. Parametric studies performed test effects coronavirus. Some important factors, significantly vary pointed out. Through regulating parameters equation, potential therapies drug delivery engineering approach treat disease possibly established. Extension model further suggested. This study opens way probing into Modellierung der Denaturierung oder Repliziryng von SARS-Korona-Viren Zusammenfassung Der Kenntnisstand uber die Eigenschaften des neu aufgetretenen Korona Virus, einige Hundert Menschenleben gekostet hat, ist relativ gering. Die Ermittlung Denaturierungs- und Replizierungsmechanismuses Virus fur seine Bekampfung hoher Bedeutung. Experimentelle Untersuchungen diesem extrem gefahrlichen durfen nur durch Laboratorien mit einem hohen Sicherheitsstandard erfolgen. Vorhersage Verhaltens unterschiedlichen Umgebungsbedingungen dabei erforderlich. vorliegenden Studie wird uberlebensdauer unter Labor- realen Bedingungen Anwendung bekannten Arrhenius-Beziehung temperaturabhangige Vorgange ermittelt. Das physikalische chemische Verhalten anhand zugrundeliegenden Modell- Parameter beschrieben. Basierend auf den ersten Messungen Mitgliedern WHO-laboratory-network Stabilitat Widerstandsfahigkeit wurden erstmalig Geschwindigkeitskoeffizienten Berechnungsmodells bestimmt. Vorhersagen Uberlebensdauer SARS-Virus Temperaturbedingungen ausgefuhrt. sich hieraus ergebende, sehr unterschiedliche Ausmas Uberlebensfahigkeit Abhangigkeit Umgebungstemperatur Vergleich verfugbaren experimentellen Ergebnissen bestatigt worden. vorgestellten zur Interpretation realer Phanomene Entwicklung technischer Masnahmen Vorbeugung klinischen Therapierung diskutiert. Der Einflus Unsicherheiten Modells analysiert abgeschatzt. Parametrische Studien sind durchgefuhrt worden, um darzustellen. Einige wichtige Einflusgrosen Replikationsfahigkeit werden aufgezeigt. Durch eine Variation Modellparameter kann potentielle Wirksamkeit medikamentoser physikalischer Therapien abgeschatzt werden. Erweiterungsmoglichkeiten vorgeschlagen. vorliegende ermoglicht neue, theoretische Vorgehensweisen Untersuchung komplexen Verhaltensmusters Virus.

参考文章(24)
John Pearce, Sharon Thomsen, Rate Process Analysis of Thermal Damage Springer, Boston, MA. pp. 561- 606 ,(1995) , 10.1007/978-1-4757-6092-7_17
YiJun Ruan, Chia Lin Wei, Ai Ee Ling, Vinsensius B Vega, Herve Thoreau, Su Yun Se Thoe, Jer-Ming Chia, Patrick Ng, Kuo Ping Chiu, Landri Lim, Tao Zhang, Kwai Peng Chan, Lynette Oon Lin Ean, Mah Lee Ng, Sin Yee Leo, Lisa FP Ng, Ee Chee Ren, Lawrence W Stanton, Philip M Long, Edison T Liu, None, Comparative full-length genome sequence analysis of 14 SARS coronavirus isolates and common mutations associated with putative origins of infection The Lancet. ,vol. 361, pp. 1779- 1785 ,(2003) , 10.1016/S0140-6736(03)13414-9
John M Nicholls, Leo LM Poon, Kam C Lee, Wai F Ng, Sik T Lai, Chung Y Leung, Chung M Chu, Pak K Hui, Kong L Mak, Wilna Lim, Kin W Yan, Kwok H Chan, Ngai C Tsang, Yi Guan, Kwok Y Yuen, JS Malik Peiris, Lung pathology of fatal severe acute respiratory syndrome The Lancet. ,vol. 361, pp. 1773- 1778 ,(2003) , 10.1016/S0140-6736(03)13413-7
D. A. Torvi, J. D. Dale, A finite element model of skin subjected to a flash fire. Journal of Biomechanical Engineering-transactions of The Asme. ,vol. 116, pp. 250- 255 ,(1994) , 10.1115/1.2895727
Christl A Donnelly, Azra C Ghani, Gabriel M Leung, Anthony J Hedley, Christophe Fraser, Steven Riley, Laith J Abu-Raddad, Lai-Ming Ho, Thuan-Quoc Thach, Patsy Chau, King-Pan Chan, Tai-Hing Lam, Lai-Yin Tse, Thomas Tsang, Shao-Haei Liu, James HB Kong, Edith MC Lau, Neil M Ferguson, Roy M Anderson, Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Kong The Lancet. ,vol. 361, pp. 1761- 1766 ,(2003) , 10.1016/S0140-6736(03)13410-1
Loletta K-Y So, Arthur CW Lau, Loretta YC Yam, Thomas MT Cheung, Edwin Poon, Raymond WH Yung, KY Yuen, Development of a standard treatment protocol for severe acute respiratory syndrome The Lancet. ,vol. 361, pp. 1615- 1617 ,(2003) , 10.1016/S0140-6736(03)13265-5
JSM Peiris, ST Lai, LLM Poon, Y Guan, LYC Yam, W Lim, J Nicholls, WKS Yee, WW Yan, MT Cheung, VCC Cheng, KH Chan, DNC Tsang, RWH Yung, TK Ng, KY Yuen, None, Coronavirus as a possible cause of severe acute respiratory syndrome The Lancet. ,vol. 361, pp. 1319- 1325 ,(2003) , 10.1016/S0140-6736(03)13077-2
Kanchan Anand, John Ziebuhr, Parvesh Wadhwani, Jeroen R Mesters, Rolf Hilgenfeld, Coronavirus Main Proteinase (3CLpro) Structure: Basis for Design of Anti-SARS Drugs Science. ,vol. 300, pp. 1763- 1767 ,(2003) , 10.1126/SCIENCE.1085658
Yunsheng Xu, Renzhang Qian, Analysis of thermal injury process based on enzyme deactivation mechanisms Journal of Biomechanical Engineering-transactions of The Asme. ,vol. 117, pp. 462- 465 ,(1995) , 10.1115/1.2794208