A 3-d poisson solver based on conjugate gradients compared to standard iterative methods and its performance on vector computers

作者: H Kapitza , D Eppel

DOI: 10.1016/0021-9991(87)90067-2

关键词:

摘要: Abstract A conjugate gradient method for solving a 3-D Poisson equation in Cartesian unequally spaced coordinates is tested concurrence to standard iterative methods. It found that the algorithm far superior Red-Black-SOR with optimal parameter. In no relaxation parameter needed, and there are restrictions on number of gridpoints three directions. The iteration routine vectorizable large extent by compiler CYBER 205 without any special preparations. Utilizing some features vector computers it completely only minor changes code.

参考文章(22)
J. A. Meijerink, H. A. van der Vorst, An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix Mathematics of Computation. ,vol. 31, pp. 148- 162 ,(1977) , 10.1090/S0025-5718-1977-0438681-4
A. Behie, P.A. Forsyth, Multi-grid solution of three-dimensional problems with discontinuous coefficients Applied Mathematics and Computation. ,vol. 13, pp. 229- 240 ,(1983) , 10.1016/0096-3003(83)90014-0
Robert B. Wilhelmson, James H. Ericksen, Direct solutions for Poisson's equation in three dimensions Journal of Computational Physics. ,vol. 25, pp. 319- 331 ,(1977) , 10.1016/0021-9991(77)90001-8
Ivar Gustafsson, A class of first order factorization methods Bit Numerical Mathematics. ,vol. 18, pp. 142- 156 ,(1978) , 10.1007/BF01931691
P. K. Khosla, S. G. Rubin, A conjugate gradient iterative method Seventh International Conference on Numerical Methods in Fluid Dynamics. ,vol. 9, pp. 248- 253 ,(1981) , 10.1007/3-540-10694-4_37
A. BEHIE, P. FORSYTH, Comparison of Fast Iterative Methods for Symmetric Systems Ima Journal of Numerical Analysis. ,vol. 3, pp. 41- 63 ,(1983) , 10.1093/IMANUM/3.1.41
Todd Dupont, Richard P Kendall, HH Rachford, Jr, An Approximate Factorization Procedure for Solving Self-Adjoint Elliptic Difference Equations SIAM Journal on Numerical Analysis. ,vol. 5, pp. 559- 573 ,(1968) , 10.1137/0705045
J. K. Reid, The Use of Conjugate Gradients for Systems of Linear Equations Possessing “Property A” SIAM Journal on Numerical Analysis. ,vol. 9, pp. 325- 332 ,(1972) , 10.1137/0709032