Distribution of the eigenvalues of random block-matrices

作者: Marianna Bolla

DOI: 10.1016/J.LAA.2003.08.015

关键词:

摘要: The asymptotic behaviour of the eigenvalues random block-matrices is investigated with block sizes tending to infinity in same order. In proofs some extended version Wigner’s semi-circle law as well perturbation results for symmetric matrices are used. paper also deals distribution protruding and applications graphs.

参考文章(9)
Marianna Bolla, Gábor Tusnády, Spectra and optimal partitions of weighted graphs Discrete Mathematics. ,vol. 128, pp. 1- 20 ,(1994) , 10.1016/0012-365X(94)90100-7
J. H. Wilkinson, The algebraic eigenvalue problem ,(1965)
Illés J. Farkas, Imre Derényi, Albert-László Barabási, Tamás Vicsek, Spectra of “real-world” graphs: Beyond the semicircle law Physical Review E. ,vol. 64, pp. 026704- 026704 ,(2001) , 10.1103/PHYSREVE.64.026704
Z. Füredi, J. Komlós, The eigenvalues of random symmetric matrices Combinatorica. ,vol. 1, pp. 233- 241 ,(1981) , 10.1007/BF02579329
Sheldon M Ross, Sheldon M Ross, Sheldon M Ross, Sheldon M Ross, Etats-Unis Mathématicien, A First Course in Probability ,(1976)
Ludwig Arnold, On the asymptotic distribution of the eigenvalues of random matrices Journal of Mathematical Analysis and Applications. ,vol. 20, pp. 262- 268 ,(1967) , 10.1016/0022-247X(67)90089-3
Eugene P. Wigner, On the Distribution of the Roots of Certain Symmetric Matrices The Annals of Mathematics. ,vol. 67, pp. 325- ,(1958) , 10.2307/1970008
Ferenc Juhász, On the spectrum of a random graph North-Holland Publishing Co. ; János Bolyai Mathematical Society. ,(1981)
E. I., J. H. Wilkinson, The Algebraic Eigenvalue Problem Mathematics of Computation. ,vol. 20, pp. 621- ,(1966) , 10.2307/2003558