Singular value decomposition of large random matrices (for two-way classification of microarrays)

作者: Marianna Bolla , Katalin Friedl , András Krámli

DOI: 10.1016/J.JMVA.2009.09.006

关键词:

摘要: Asymptotic behavior of the singular value decomposition (SVD) blown up matrices and normalized contingency tables exposed to random noise is investigated. It proved that such an mxn matrix almost surely has a constant number large values (of order mn), while rest are m+n as m,n->~. We prove sure properties for corresponding isotropic subspaces noisy correspondence matrices. An algorithm, applicable two-way classification microarrays, also given finds underlying block structure.

参考文章(23)
Iain M. Johnstone, On the distribution of the largest eigenvalue in principal components analysis Annals of Statistics. ,vol. 29, pp. 295- 327 ,(2001) , 10.1214/AOS/1009210544
Marianna Bolla, Recognizing linear structure in noisy matrices Linear Algebra and its Applications. ,vol. 402, pp. 228- 244 ,(2005) , 10.1016/J.LAA.2004.12.023
Ingram Olkin, The 70th anniversary of the distribution of random matrices: A survey Linear Algebra and its Applications. ,vol. 354, pp. 231- 243 ,(2002) , 10.1016/S0024-3795(01)00314-7
Dimitris Achlioptas, Frank Mcsherry, Fast computation of low-rank matrix approximations Journal of the ACM. ,vol. 54, pp. 9- ,(2007) , 10.1145/1219092.1219097
Michel Talagrand, Concentration of measure and isoperimetric inequalities in product spaces Publications Mathématiques de l'IHÉS. ,vol. 81, pp. 73- 205 ,(1995) , 10.1007/BF02699376
Delphine Féral, Sandrine Péché, The Largest Eigenvalue of Rank One Deformation of Large Wigner Matrices Communications in Mathematical Physics. ,vol. 272, pp. 185- 228 ,(2007) , 10.1007/S00220-007-0209-3
A.E. Litvak, A. Pajor, M. Rudelson, N. Tomczak-Jaegermann, Smallest singular value of random matrices and geometry of random polytopes Advances in Mathematics. ,vol. 195, pp. 491- 523 ,(2005) , 10.1016/J.AIM.2004.08.004
Alexander Soshnikov, UNIVERSALITY AT THE EDGE OF THE SPECTRUM IN WIGNER RANDOM MATRICES Communications in Mathematical Physics. ,vol. 207, pp. 697- 733 ,(1999) , 10.1007/S002200050743
L. Liu, D. M. Hawkins, S. Ghosh, S. S. Young, Robust singular value decomposition analysis of microarray data Proceedings of the National Academy of Sciences of the United States of America. ,vol. 100, pp. 13167- 13172 ,(2003) , 10.1073/PNAS.1733249100
Noga Alon, Michael Krivelevich, Van H. Vu, On the concentration of eigenvalues of random symmetric matrices Israel Journal of Mathematics. ,vol. 131, pp. 259- 267 ,(2002) , 10.1007/BF02785860