作者: Jonathan M. Howard , Hai Lin , Garam Kim , Jolene M Draper , Maximilian Haeussler
DOI: 10.1101/175901
关键词:
摘要: Alternative pre-mRNA splicing plays a major role in expanding the transcript output of human genes. This process is regulated, in part, by the interplay of trans-acting RNA binding proteins (RBPs) with myriad cis-regulatory elements scattered throughout pre-mRNAs. These molecular recognition events are critical for defining the protein coding sequences (exons) within pre-mRNAs and directing spliceosome assembly on non-coding regions (introns). One of the earliest events in this process is recognition of the 3’ splice site by U2 small nuclear RNA auxiliary factor 2 (U2AF2). Splicing regulators, such as the heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1), influence spliceosome assembly both in vitro and in vivo, but their mechanisms of action remain poorly described on a global scale. HNRNPA1 also promotes proof reading of 3’ss sequences though a direct interaction with the U2AF heterodimer. To determine how HNRNPA1 regulates U2AF-RNA interactions in vivo, we analyzed U2AF2 RNA binding specificity using individual-nucleotide resolution crosslinking immunoprecipitation (iCLIP) in control- and HNRNPA1 over-expression cells. We observed changes in the distribution of U2AF2 crosslinking sites relative to the 3’ splice sites of alternative cassette exons but not constitutive exons upon HNRNPA1 over-expression. A subset of these events shows a concomitant increase of U2AF2 crosslinking at distal intronic regions, suggesting a shift of U2AF2 to “decoy” binding sites. Of the many non-canonical U2AF2 binding sites, Alu-derived RNA sequences represented one of the most abundant classes of HNRNPA1-dependent decoys. Splicing reporter assays demonstrated that mutation of U2AF2 decoy sites inhibited HNRNPA1-dependent exon skipping in vivo. We propose that HNRNPA1 regulates exon definition by modulating the interaction of U2AF2 with decoy or bona fide 3’ splice sites.