The Effect of Quantum and Charged Particles on the Performance of the Dynamic Vector-evaluated Particle Swarm Optimisation Algorithm

作者: Mardé Helbig , Andries P. Engelbrecht

DOI: 10.1145/2739480.2754810

关键词:

摘要: Many problems in the real-world have more than one objective, with at least two objectives conflict another. In addition, objective changes over time. These kinds of are called dynamic multi-objective optimisation (DMOOPs). Studies shown that both quantum particle swarm (QPSO) and charged (CPSO) algorithms perform well environments, since they maintain diversity. Therefore, this paper investigates effect using either QPSOs or CPSOs sub-swarms vector-evaluated (DVEPSO) algorithm. DVEPSO variations then compared against default algorithm uses gbest PSOs heterogeneous contain particles. Furthermore, all aforementioned configurations (DMOPSO) was winning a comprehensive comparative study algorithms. The results indicate particles improve performance DVEPSO, especially for DMOOPs deceptive POF non-linear POS.

参考文章(23)
Maximino Salazar Lechuga, Multi-objective optimisation using sharing in swarm optimisation algorithms University of Birmingham. ,(2009)
A. Carlisle, G. Dozler, Tracking changing extrema with adaptive particle swarm optimizer world automation congress. ,vol. 13, pp. 265- 270 ,(2002) , 10.1109/WAC.2002.1049555
Peter J. Bentley, T. M. Blackwell, Dynamic Search With Charged Swarms genetic and evolutionary computation conference. pp. 19- 26 ,(2002)
Marde Greeff, Andries P Engelbrecht, None, Dynamic Multi-objective Optimisation Using PSO Multi-Objective Swarm Intelligent System. pp. 105- 123 ,(2010) , 10.1007/978-3-642-05165-4_5
Marde Helbig, Andries P. Engelbrecht, Heterogeneous dynamic vector evaluated particle swarm optimisation for dynamic multi-objective optimisation congress on evolutionary computation. pp. 3151- 3159 ,(2014) , 10.1109/CEC.2014.6900303
Kyle Robert Harrison, Beatrice M. Ombuki-Berman, Andries P. Engelbrecht, Dynamic multi-objective optimization using charged vector evaluated particle swarm optimization congress on evolutionary computation. pp. 1929- 1936 ,(2014) , 10.1109/CEC.2014.6900399
Mardé Helbig, Andries P. Engelbrecht, Benchmarks for dynamic multi-objective optimisation algorithms ACM Computing Surveys. ,vol. 46, pp. 37- ,(2014) , 10.1145/2517649
Marde Helbig, Andries P. Engelbrecht, Analysing the performance of dynamic multi-objective optimisation algorithms congress on evolutionary computation. pp. 1531- 1539 ,(2013) , 10.1109/CEC.2013.6557744
Mario Cámara, Julio Ortega, Francisco de Toro, A single front genetic algorithm for parallel multi-objective optimization in dynamic environments Neurocomputing. ,vol. 72, pp. 3570- 3579 ,(2009) , 10.1016/J.NEUCOM.2008.12.041