Heterogeneous dynamic vector evaluated particle swarm optimisation for dynamic multi-objective optimisation

作者: Marde Helbig , Andries P. Engelbrecht

DOI: 10.1109/CEC.2014.6900303

关键词:

摘要: Optimisation problems with more than one objective, where at least objective changes over time, are called dynamic multi-objective optimisation (DMOOPs). Since two objectives in conflict another, a single solution does not exist, and therefore the goal of algorithm (DMOA) is to track set optimal trade-off solutions time. One major issues when solving problems, balancing exploration exploitation during search process. This paper investigates performance vector evaluated particle swarm (DVEPSO) using heterogeneous PSOs (HPSOs), each has different behaviour. The study determine whether use (HPSO) algorithms will improve DVEPSO by incorporating particles behaviour (PSO) algorithm. results indicate that HPSOs improves DVEPSO, especially for type I III DMOOPs.

参考文章(29)
A. Carlisle, G. Dozler, Tracking changing extrema with adaptive particle swarm optimizer world automation congress. ,vol. 13, pp. 265- 270 ,(2002) , 10.1109/WAC.2002.1049555
F. van den Bergh, A.P. Engelbrecht, A new locally convergent particle swarm optimiser systems, man and cybernetics. ,vol. 3, pp. 6- ,(2002) , 10.1109/ICSMC.2002.1176018
Mario Cámara, Julio Ortega, Francisco de Toro, Approaching Dynamic Multi-Objective Optimization Problems by Using Parallel Evolutionary Algorithms Advances in Multi-Objective Nature Inspired Computing. pp. 63- 86 ,(2010) , 10.1007/978-3-642-11218-8_4
Andries P. Engelbrecht, Heterogeneous particle swarm optimization international conference on swarm intelligence. pp. 191- 202 ,(2010) , 10.1007/978-3-642-15461-4_17
Peter J. Bentley, T. M. Blackwell, Dynamic Search With Charged Swarms genetic and evolutionary computation conference. pp. 19- 26 ,(2002)
Arlindo Silva, Ana Neves, Ernesto Costa, An Empirical Comparison of Particle Swarm and Predator Prey Optimisation international conference on artificial intelligence. pp. 103- 110 ,(2002) , 10.1007/3-540-45750-X_13
Marde Greeff, Andries P Engelbrecht, None, Dynamic Multi-objective Optimisation Using PSO Multi-Objective Swarm Intelligent System. pp. 105- 123 ,(2010) , 10.1007/978-3-642-05165-4_5
Wee Tat Koo, Chi Keong Goh, Kay Chen Tan, A predictive gradient strategy for multiobjective evolutionary algorithms in a fast changing environment Memetic Computing. ,vol. 2, pp. 87- 110 ,(2010) , 10.1007/S12293-009-0026-7
Weilin Du, Bin Li, Multi-strategy ensemble particle swarm optimization for dynamic optimization Information Sciences. ,vol. 178, pp. 3096- 3109 ,(2008) , 10.1016/J.INS.2008.01.020
Mardé Helbig, Andries P. Engelbrecht, Benchmarks for dynamic multi-objective optimisation algorithms ACM Computing Surveys. ,vol. 46, pp. 37- ,(2014) , 10.1145/2517649