Growth morphologies of crystal surfaces

作者: Rong-Fu Xiao , J. Iwan D. Alexander , Franz Rosenberger

DOI: 10.1103/PHYSREVA.43.2977

关键词:

摘要: We have expanded our earlier Monte Carlo model [Phys. Rev. A 38, 2447 (1988); J. Crystal Growth 100, 313 (1990)] to three dimensions and included reevaporation after accommodation growth on dislocation-induced steps. found again that, for a given set of parameters, the critical size, beyond which crystal cannot retain its macroscopically faceted shape, scales linearly with mean free path in vapor. However, three-dimensional (3D) systems show increased shape stability compared corresponding 2D cases. Extrapolation results mean-free-path conditions used morphological experiments leads order-of-magnitude agreement predicted size experimental findings. The region smooth (faceted) surfaces parameter space temperature supersaturation depends both surface bulk diffusion. While diffusion is seen morphology scale length, always destabilizing.The atomic roughness increases increase supersaturation. That is, tendency kinetics anisotropies stabilize reduced through thermal kinetic roughening. It also that solid-on-solid assumption, can be advantageously at low temperatures supersaturations, insufficient describe dynamics atomically rough interfaces where governs process. For an emerging screw dislocation, we find spiral mechanism dominates supersaturations. polygonization decreases increasing or When nutrient comparable lattice constant, combined effect reduces terrace width center region. At elevated nucleation-controlled dominate corner edge regions facet, while mode prevails center. Thus, addition confirming observation growing prevailing mechanism, are able obtain detailed insight into processes leading loss face facet stability.

参考文章(38)
V.O. Esin, L.P. Tarabaev, V.N. Porozkov, I.A. Vdovina, Mechanism and shapes of crystal growth Journal of Crystal Growth. ,vol. 66, pp. 459- 464 ,(1984) , 10.1016/0022-0248(84)90230-6
G.H. Gilmer, P. Bennema, Computer simulation of crystal surface structure and growth kinetics Journal of Crystal Growth. pp. 148- 153 ,(1972) , 10.1016/0022-0248(72)90145-5
H. J. Leamy, K. A. Jackson, Roughness of the Crystal‐Vapor Interface Journal of Applied Physics. ,vol. 42, pp. 2121- 2127 ,(1971) , 10.1063/1.1660497
H.J. Leamy, G.H. Gilmer, The equilibrium properties of crystal surface steps Journal of Crystal Growth. pp. 499- 502 ,(1974) , 10.1016/0022-0248(74)90365-0
Robert H. Swendsen, Monte Carlo studies of the interface roughening transition Physical Review B. ,vol. 15, pp. 5421- 5431 ,(1977) , 10.1103/PHYSREVB.15.5421
V. O. Esin, L. P. Tarabaev, A generalized criterion for the transition from the layer to the continuous mechanism of crystal growth physica status solidi (a). ,vol. 90, pp. 425- 437 ,(1985) , 10.1002/PSSA.2210900203
G. H. Gilmer, P. Bennema, Simulation of Crystal Growth with Surface Diffusion Journal of Applied Physics. ,vol. 43, pp. 1347- 1360 ,(1972) , 10.1063/1.1661325
Rong-Fu Xiao, J. Iwan D. Alexander, Franz Rosenberger, Morphological evolution of growing crystals: A Monte Carlo simulation Physical Review A. ,vol. 38, pp. 2447- 2456 ,(1988) , 10.1103/PHYSREVA.38.2447
Rong-Fu Xiao, J.Iwan D. Alexander, Franz Rosenberger, Growth morphology with anisotropic surface kinetics Journal of Crystal Growth. ,vol. 100, pp. 313- 329 ,(1990) , 10.1016/0022-0248(90)90231-9
Yukio Saito, Tsuyoshi Ueta, Monte Carlo studies of equilibrium and growth shapes of a crystal Physical Review A. ,vol. 40, pp. 3408- 3419 ,(1989) , 10.1103/PHYSREVA.40.3408