Numerical Harmonic Analysis and Diffusions on the 3D-Motion Group

作者: Gregory S. Chirikjian

DOI: 10.1007/978-0-8176-8379-5_17

关键词:

摘要: Representation theory and harmonic analysis on the group of proper motions in three-dimensional Euclidean space has been applied a variety areas ranging from robotics to DNA statistical mechanics. This can be used implement noncommutative convolutions analytically numerically, as well solve diffusion equations over this group. chapter presents brief review together with an emphasis applications involving diffusions convolutions. Since representations noncompact are infinite dimensional, quantification numerical truncation errors is also addressed.

参考文章(22)
Gregory S. Chirikjian, Modeling loop entropy. Methods in Enzymology. ,vol. 487, pp. 99- 132 ,(2011) , 10.1016/B978-0-12-381270-4.00004-4
Wooram Park, Charles R Midgett, Dean R Madden, Gregory S Chirikjian, A stochastic kinematic model of class averaging in single-particle electron microscopy The International Journal of Robotics Research. ,vol. 30, pp. 730- 754 ,(2011) , 10.1177/0278364911400220
G. H. Shortley, The Theory of Atomic Spectra ,(1935)
Gregory S. Chirikjian, , Information-theoretic inequalities on unimodular Lie groups The Journal of Geometric Mechanics. ,vol. 2, pp. 119- 158 ,(2010) , 10.3934/JGM.2010.2.119
Yu Zhou, Gregory S. Chirikjian, Conformational Statistics of Semiflexible Macromolecular Chains with Internal Joints Macromolecules. ,vol. 39, pp. 1950- 1960 ,(2006) , 10.1021/MA0512556
Yu Zhou, Gregory S. Chirikjian, Conformational statistics of bent semiflexible polymers The Journal of Chemical Physics. ,vol. 119, pp. 4962- 4970 ,(2003) , 10.1063/1.1596911
A. U. Klimyk, N. Ya. Vilenkin, Representation of Lie groups and special functions ,(1991)