Representation of Lie groups and special functions

作者: A. U. Klimyk , N. Ya. Vilenkin

DOI:

关键词:

摘要: At first only elementary functions were studied in mathematical analysis. Then new introduced to evaluate integrals. They named special functions: integral sine, logarithms, the exponential function, probability and so on. Elliptic integrals proved be most important. are connected with rectification of arcs certain curves. The remarkable idea Abel replace these by corresponding inverse led creation theory elliptic functions.

参考文章(107)
Svante Janson, Jaak Peetre, A New Generalization of Hankel Operators (the Case of Higher Weights) Mathematische Nachrichten. ,vol. 132, pp. 313- 328 ,(1987) , 10.1002/MANA.19871320121
Walter Schempp, Radar ambiguity functions, the Heisenberg group, and holomorphic theta series Proceedings of the American Mathematical Society. ,vol. 92, pp. 103- 110 ,(1984) , 10.1090/S0002-9939-1984-0749901-6
Willard Miller, Special Functions and the Complex Euclidean Group in 3‐Space. I Journal of Mathematical Physics. ,vol. 9, pp. 1163- 1175 ,(1968) , 10.1063/1.1664697
S.C Milne, An elementary proof of the Macdonald identities for A(1)l Advances in Mathematics. ,vol. 57, pp. 34- 70 ,(1985) , 10.1016/0001-8708(85)90105-7
T.H Koornwinder, The addition formula for Jacobi polynomials I summary of results Indagationes Mathematicae (Proceedings). ,vol. 75, pp. 188- 191 ,(1972) , 10.1016/1385-7258(72)90011-X
Kenneth I Gross, Ray A Kunze, Bessel functions and representation theory. I Journal of Functional Analysis. ,vol. 22, pp. 73- 105 ,(1976) , 10.1016/0022-1236(76)90015-X
V. A. Vasil'ev, I. M. Gel'fand, A. V. Zelevinskii, General hypergeometric functions on complex Grassmannians Functional Analysis and Its Applications. ,vol. 21, pp. 19- 31 ,(1987) , 10.1007/BF01077982
James Lepowsky, Robert Lee Wilson, A lie theoretic interpretation and proof of the Rogers-Ramanujan identities Advances in Mathematics. ,vol. 45, pp. 21- 72 ,(1982) , 10.1016/S0001-8708(82)80012-1
Willard Miller, Clebsch‐Gordan Coefficients and Special Function Identities. I. The Harmonic Oscillator Group Journal of Mathematical Physics. ,vol. 13, pp. 648- 655 ,(1972) , 10.1063/1.1666031
M A Markov, Vladimir I Man'ko, Group Theoretical Methods in Physics ,(1987)