CRISPR-derived genome editing technologies for metabolic engineering.

作者: Keiji Nishida , Akihiko Kondo

DOI: 10.1016/J.YMBEN.2020.12.002

关键词:

摘要: In metabolic engineering, genome editing tools make it much easier to discover and evaluate relevant genes pathways construct strains. Clustered regularly interspaced palindromic repeats (CRISPR)-associated (Cas) systems now have become the first choice for engineering in many organisms includingindustrially ones. Targeted DNA cleavage by CRISPR-Cas provides variousgenome modes such as indels, replacements, large deletions, knock-in chromosomal rearrangements, while host-dependent differences repair need be considered. The versatility of CRISPR system has given rise derivative technologies that complement nuclease-based editing, which causes cytotoxicity especially microorganisms. Deaminase-mediated base installs targeted point mutations with less toxicity. CRISPRi CRISPRa can temporarily control gene expression without changing genomic sequence. Multiplex, combinatorial scale are made possible streamlined design construction gRNA libraries further accelerates comprehensive discovery, evaluation building pathways. This review summarizes technical basis recent advances CRISPR-related applied purposes, representative examples industrially eukaryotic prokaryotic organisms.

参考文章(80)
Yifan Li, Zhenquan Lin, Can Huang, Yan Zhang, Zhiwen Wang, Ya-jie Tang, Tao Chen, Xueming Zhao, Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing. Metabolic Engineering. ,vol. 31, pp. 13- 21 ,(2015) , 10.1016/J.YMBEN.2015.06.006
Tadas Jakočiūnas, Ida Bonde, Markus Herrgård, Scott J Harrison, Mette Kristensen, Lasse E Pedersen, Michael K Jensen, Jay D Keasling, None, Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae Metabolic Engineering. ,vol. 28, pp. 213- 222 ,(2015) , 10.1016/J.YMBEN.2015.01.008
Wenyan Jiang, David Bikard, David Cox, Feng Zhang, Luciano A Marraffini, RNA-guided editing of bacterial genomes using CRISPR-Cas systems Nature Biotechnology. ,vol. 31, pp. 233- 239 ,(2013) , 10.1038/NBT.2508
Jesse G. Zalatan, Michael E. Lee, Ricardo Almeida, Luke A. Gilbert, Evan H. Whitehead, Marie La Russa, Jordan C. Tsai, Jonathan S. Weissman, John E. Dueber, Lei S. Qi, Wendell A. Lim, Engineering Complex Synthetic Transcriptional Programs with CRISPR RNA Scaffolds Cell. ,vol. 160, pp. 339- 350 ,(2015) , 10.1016/J.CELL.2014.11.052
Tadas Jakociunas, Arun S Rajkumar, Jie Zhang, Dushica Arsovska, Angelica Rodriguez, Christian Bille Jendresen, Mette L Skjødt, Alex T Nielsen, Irina Borodina, Michael K Jensen, Jay D Keasling, None, CasEMBLR: Cas9-Facilitated Multiloci Genomic Integration of in Vivo Assembled DNA Parts in Saccharomyces cerevisiae ACS Synthetic Biology. ,vol. 4, pp. 1226- 1234 ,(2015) , 10.1021/ACSSYNBIO.5B00007
M. Jinek, K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna, E. Charpentier, A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. ,vol. 337, pp. 816- 821 ,(2012) , 10.1126/SCIENCE.1225829
Jae Seong Lee, Thomas Beuchert Kallehauge, Lasse Ebdrup Pedersen, Helene Faustrup Kildegaard, Site-specific integration in CHO cells mediated by CRISPR/Cas9 and homology-directed DNA repair pathway Scientific Reports. ,vol. 5, pp. 8572- 8572 ,(2015) , 10.1038/SREP08572
Jennifer A. Doudna, Emmanuelle Charpentier, The new frontier of genome engineering with CRISPR-Cas9 Science. ,vol. 346, pp. 1258096- 1258096 ,(2014) , 10.1126/SCIENCE.1258096
Patrick D. Hsu, Eric S. Lander, Feng Zhang, Development and applications of CRISPR-Cas9 for genome engineering. Cell. ,vol. 157, pp. 1262- 1278 ,(2014) , 10.1016/J.CELL.2014.05.010