Planning the Shortest Safe Path Amidst Unpredictably Moving Obstacles

作者: Jur van den Berg , Mark Overmars

DOI: 10.1007/978-3-540-68405-3_7

关键词:

摘要: … The maximal velocity vi determines the opening angle of the cone, … The term θ0 gives the starting angle of the spiral. … Each of them is uniquely defined by the initial angle θ0 (see …

参考文章(13)
J.-R. Sack, J. Urrutia, Handbook of computational geometry North-Holland Publishing Co.. ,(2000)
Joseph S.B. Mitchell, Chapter 15 – Geometric Shortest Paths and Network Optimization Handbook of Computational Geometry. pp. 633- 701 ,(2000) , 10.1016/B978-044482537-7/50016-4
Ee-Chien Chang, Sung Woo Choi, DoYong Kwon, Hyungju Park, Chee K. Yap, Shortest path amidst disc obstacles is computable symposium on computational geometry. pp. 116- 125 ,(2005) , 10.1145/1064092.1064112
S. Petti, T. Fraichard, Safe motion planning in dynamic environments intelligent robots and systems. pp. 2210- 2215 ,(2005) , 10.1109/IROS.2005.1545549
Paolo Fiorini, Zvi Shiller, Motion Planning in Dynamic Environments Using Velocity Obstacles The International Journal of Robotics Research. ,vol. 17, pp. 760- 772 ,(1998) , 10.1177/027836499801700706
David Hsu, Robert Kindel, Jean-Claude Latombe, Stephen Rock, Randomized Kinodynamic Motion Planning with Moving Obstacles The International Journal of Robotics Research. ,vol. 21, pp. 233- 255 ,(2002) , 10.1177/027836402320556421
J. van den Berg, D. Ferguson, J. Kuffner, Anytime path planning and replanning in dynamic environments international conference on robotics and automation. pp. 2366- 2371 ,(2006) , 10.1109/ROBOT.2006.1642056
Marc van Kreveld, Mark de Berg, Mark Overmars, Otfried Cheong, Computational Geometry: Algorithms and Applications ,(1997)
D. Vasquez, F. Large, T. Fraichard, C. Laugier, High-speed autonomous navigation with motion prediction for unknown moving obstacles intelligent robots and systems. ,vol. 1, pp. 82- 87 ,(2004) , 10.1109/IROS.2004.1389333