Universality Theorems for Inscribed Polytopes and Delaunay Triangulations

作者: Karim A. Adiprasito , Arnau Padrol , Louis Theran

DOI: 10.1007/S00454-015-9714-X

关键词:

摘要: We prove that every primary basic semi-algebraic set is homotopy equivalent to the of inscribed realizations (up Mobius transformation) a polytope. If is, moreover, open, it additionally, homotopy) retract realization space some neighborly (and simplicial) also show all algebraic extensions $${\mathbb {Q}}$$Q are needed coordinatize polytopes. These statements polytopes exhibit Mnev universality phenomenon. Via stereographic projections, these theorems have direct translation for Delaunay subdivisions. In particular, realizability problem triangulations polynomially existential theory reals.

参考文章(45)
P. Suvorov, Isotopic but not rigidly isotopic plane systems of straight lines Lecture Notes in Mathematics. pp. 545- 556 ,(1988) , 10.1007/BFB0082793
Peter W. Shor, Stretchability of Pseudolines is NP-Hard. Applied Geometry And Discrete Mathematics. pp. 531- 554 ,(1990)
Karim Adiprasito, Günter M. Ziegler, Many polytopes with low-dimensional realization space ,(2012)
Ernst Steinitz, Über isoperimetrische Probleme bei konvexen Polyedern. Crelle's Journal. ,vol. 158, pp. 129- 153 ,(1927)
Jürgen Richter-Gebert, Realization Spaces of Polytopes ,(1996)
Jürgen Richter-Gebert, Günter M. Ziegler, Martin Henk, Basic properties of convex polytopes Handbook of discrete and computational geometry. pp. 243- 270 ,(1997) , 10.1201/9781420035315.CH16
Mohammad A. Shokrollahi, Michael Clausen, Peter Brgisser, Algebraic Complexity Theory ,(1996)