Basic properties of convex polytopes

作者: Jürgen Richter-Gebert , Günter M. Ziegler , Martin Henk

DOI: 10.1201/9781420035315.CH16

关键词:

摘要: Convex polytopes are fundamental geometric objects that have been investigated since antiquity. The beauty of their theory is nowadays complemented by importance for many other mathematical subjects, ranging from integration theory, algebraic topology, and geometry (toric varieties) to linear combinatorial optimization. In this chapter we try give a short introduction, provide sketch “what look like” “how they behave,” with explicit examples, briefly state some main results (where further details in the subsequent chapters Handbook). We concentrate on two topics:

参考文章(29)
Margaret M. BAYER, Carl W. LEE, Combinatorial Aspects of Convex Polytopes Handbook of Convex Geometry#R##N#Part A. pp. 485- 534 ,(1993) , 10.1016/B978-0-444-89596-7.50019-5
Peter McMULLEN, Valuations and Dissections Handbook of Convex Geometry#R##N#Part B. pp. 933- 988 ,(1993) , 10.1016/B978-0-444-89597-4.50010-X
Jürgen Richter-Gebert, Realization Spaces of Polytopes ,(1996)
K. B�r�czky, Jr., M. Henk, Random projections of regular polytopes Archiv der Mathematik. ,vol. 73, pp. 465- 473 ,(1999) , 10.1007/S000130050424
Keith M. Ball, An Elementary Introduction to Modern Convex Geometry Flavors of Geometry, 1997, ISBN 0-521-62048-1, págs. 1-58. pp. 1- 58 ,(1997)
Günter M. Ziegler, Lectures on Polytopes ,(1994)
Emo Welzl, Gram's Equation - A Probabilistic Proof Proceedings of the Colloquium in Honor of Arto Salomaa on Results and Trends in Theoretical Computer Science. pp. 422- 424 ,(1994) , 10.1007/3-540-58131-6_64
Fernando Affentranger, Rolf Schneider, Random projections of regular simplices Discrete & Computational Geometry. ,vol. 7, pp. 219- 226 ,(1992) , 10.1007/BF02187839
David Avis, Komei Fukuda, A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra symposium on computational geometry. ,vol. 8, pp. 98- 104 ,(1991) , 10.1145/109648.109659