Newton Polytopes in Algebraic Combinatorics

作者: Alexander Yong , Cara Monical , Cara Monical , Neriman Tokcan , Neriman Tokcan

DOI:

关键词:

摘要: A polynomial has saturated Newton polytope (SNP) if every lattice point of the convex hull its exponent vectors corresponds to a monomial. We compile instances SNP in algebraic combinatorics (some with proofs, others conjecturally): skew Schur polynomials; symmetric polynomials associated reduced words, Redfield--Polya theory, Witt vectors, and totally nonnegative matrices; resultants; discriminants (up quartics); Macdonald key Demazure atoms; Schubert Grothendieck polynomials, among others. Our principal construction is Schubitope. For any subset [n] x [n], we describe it by linear inequalities. This generalized permutahedron conjecturally positive Ehrhart polynomial. conjecture describes polynomials. also define dominance order on permutations study poset-theoretic properties.

参考文章(27)
Ernesto Vallejo, Plane Partitions and Characters of the Symmetric Group Journal of Algebraic Combinatorics. ,vol. 11, pp. 79- 88 ,(2000) , 10.1023/A:1008795704190
John R. Swallow, Laurent Manivel, Symmetric Functions Schubert Polynomials and Degeneracy Loci ,(2001)
Sara C. Billey, William Jockusch, Richard P. Stanley, Some Combinatorial Properties of Schubert Polynomials Journal of Algebraic Combinatorics. ,vol. 2, pp. 345- 374 ,(1993) , 10.1023/A:1022419800503
Dorian Croitoru, Mixed volumes of hypersimplices, root systems and shifted young tableaux Massachusetts Institute of Technology. ,(2010)
Bogdan Ion, Nonsymmetric Macdonald polynomials and Demazure characters Duke Mathematical Journal. ,vol. 116, pp. 299- 318 ,(2003) , 10.1215/S0012-7094-03-11624-5
J. Haglund, K. Luoto, S. Mason, S. van Willigenburg, Quasisymmetric Schur functions Journal of Combinatorial Theory, Series A. ,vol. 118, pp. 463- 490 ,(2011) , 10.1016/J.JCTA.2009.11.002
Rudolf Winkel, Diagram Rules for the Generation of Schubert Polynomials Journal of Combinatorial Theory, Series A. ,vol. 86, pp. 14- 48 ,(1999) , 10.1006/JCTA.1998.2931
A. LASCOUX, Transition on Grothendieck Polynomials Proceedings of the Nagoya 2000 International Workshop. pp. 164- 179 ,(2001) , 10.1142/9789812810007_0007
Richard P. Stanley, On the Number of Reduced Decompositions of Elements of Coxeter Groups European Journal of Combinatorics. ,vol. 5, pp. 359- 372 ,(1984) , 10.1016/S0195-6698(84)80039-6
R.P. Stanley, A Symmetric Function Generalization of the Chromatic Polynomial of a Graph Advances in Mathematics. ,vol. 111, pp. 166- 194 ,(1995) , 10.1006/AIMA.1995.1020