Magnetic Resonance Fingerprinting Using Recurrent Neural Networks

作者: Ilkay Oksuz , Gastao Cruz , James Clough , Aurelien Bustin , Nicolo Fuin

DOI: 10.1109/ISBI.2019.8759502

关键词:

摘要: Magnetic Resonance Fingerprinting (MRF) is a new approach to quantitative magnetic resonance imaging that allows simultaneous measurement of multiple tissue properties in single, time-efficient acquisition. Standard MRF reconstructs parametric maps using dictionary matching and requires high computational time. We propose perform map reconstruction recurrent neural network, which exploits the time-dependent information signal evolution. evaluate our method on multiparametric synthetic signals compare it existing approaches, including those based networks. Our achieves state-of-the-art estimates T1 T2 values. In addition, time reduced compared dictionary-matching approach.

参考文章(13)
Dan Ma, Vikas Gulani, Nicole Seiberlich, Kecheng Liu, Jeffrey L. Sunshine, Jeffrey L. Duerk, Mark A. Griswold, Magnetic resonance fingerprinting Nature. ,vol. 495, pp. 187- 192 ,(2013) , 10.1038/NATURE11971
Pedro A. Gómez, Cagdas Ulas, Jonathan I. Sperl, Tim Sprenger, Miguel Molina-Romero, Marion I. Menzel, Bjoern H. Menze, Learning a Spatiotemporal Dictionary for Magnetic Resonance Fingerprinting with Compressed Sensing Proceedings of MICCAI Workshop on Patch-based Techniques in Medical Imaging. pp. 112- 119 ,(2015) , 10.1007/978-3-319-28194-0_14
Wenpeng Yin, Hinrich Schütze, Katharina Kann, Mo Yu, Comparative Study of CNN and RNN for Natural Language Processing arXiv: Computation and Language. ,(2017)
Ouri Cohen, Bo Zhu, Matthew S. Rosen, MR fingerprinting Deep RecOnstruction NEtwork (DRONE) Magnetic Resonance in Medicine. ,vol. 80, pp. 885- 894 ,(2018) , 10.1002/MRM.27198
Gastão Cruz, Olivier Jaubert, Torben Schneider, Rene M. Botnar, Claudia Prieto, Rigid motion‐corrected magnetic resonance fingerprinting Magnetic Resonance in Medicine. ,vol. 81, pp. 947- 961 ,(2019) , 10.1002/MRM.27448
Zhenghan Fang, Yong Chen, Mingxia Liu, Yiqiang Zhan, Weili Lin, Dinggang Shen, Deep Learning for Fast and Spatially-Constrained Tissue Quantification from Highly-Undersampled Data in Magnetic Resonance Fingerprinting (MRF) medical image computing and computer assisted intervention. ,vol. 11046, pp. 398- 405 ,(2018) , 10.1007/978-3-030-00919-9_46
Mohammad Golbabaee, Marion I. Menzel, Mike E. Davies, Pedro A. Gómez, Dongdong Chen, Geometry of Deep Learning for Magnetic Resonance Fingerprinting arXiv: Learning. ,(2018)
Felix Lugauer, Josef Pfeuffer, Andreas K. Maier, Jens Wetzl, Tobias Würfl, Gregor Körzdörfer, Elisabeth Hoppe, Deep Learning for Magnetic Resonance Fingerprinting: A New Approach for Predicting Quantitative Parameter Values from Time Series. Studies in health technology and informatics. ,vol. 243, pp. 202- 206 ,(2017) , 10.3233/978-1-61499-808-2-202
Patrick Virtue, Stella X. Yu, Michael Lustig, Better than real: Complex-valued neural nets for MRI fingerprinting 2017 IEEE International Conference on Image Processing (ICIP). pp. 3953- 3957 ,(2017) , 10.1109/ICIP.2017.8297024